This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in ...This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.