The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopki...The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.展开更多
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre...A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.展开更多
The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated...The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated that dynamic recrystallization(DRX)is a predominant hot deformation mechanism,especially at elevated temperatures and low strain rates.The modified Johnson−Cook(J−C)and the strain compensated Arrhenius-type models were developed to predict the hot flow behavior under different deformation conditions.The correlation coefficients of modified J−C model and the strain compensated Arrhenius-type models were 0.9914 and 0.9972,respectively,their average relative errors(ARE)were 6.074%and 4.465%,respectively,and their root mean square errors(RMSE)were 10.611 and 1.665 MPa,respectively,indicating that the strain compensated Arrhenius-type model can predict the hot flow stress of AA7022-T6 aluminum alloy with an appropriate accuracy.展开更多
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans...The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.展开更多
The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on th...The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.展开更多
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu...Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.展开更多
In autonomous underwater vehicles(AUVs) the onboard power used to complete missions is limited.To solve this problem,a landing AUV has been designed,which conserves energy by sitting on the seafloor while monitoring t...In autonomous underwater vehicles(AUVs) the onboard power used to complete missions is limited.To solve this problem,a landing AUV has been designed,which conserves energy by sitting on the seafloor while monitoring the ocean.In order to study the dynamic behaviors for better control of the AUV,the dynamic analysis of the landing AUV is presented in this paper.Based on the momentum theorem and the angular momentum theorem,the dynamic model of the landing AUV is derived.The simulations of rectilinear motion,rotary motion and helix motion indicate the dynamic behaviors of the AUV.The ocean experiments validate the dynamic model presented in this paper.The experiments also verify that the landing AUV can work for a longer time than common AUVs.展开更多
The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the t...The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.展开更多
A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the s...A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.展开更多
The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emer...The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.展开更多
This paper addresses new trends in quantitative geography research. Modern social science research--including economic and social geography--has in the past decades shown an increasing interest in micro-oriented behav...This paper addresses new trends in quantitative geography research. Modern social science research--including economic and social geography--has in the past decades shown an increasing interest in micro-oriented behaviour of actors. This is inter alia clearly reflected in SIMs (spatial interaction models), where discrete choice approaches have assumed a powerful position. This paper aims to provide in particular a concise review of micro-based research, with the aim to review the potential--but also the caveats---of micro models to map out human behaviour. In particular, attention will be devoted to interactive learning principles that shape individual decisions. Lessons from cognitive sciences will be put forward and illustrated, amongst others on the basis of computational neural networks or spatial econometric approaches. Particular attention will be paid to non-linear dynamic spatial models, amongst others, in the context of chaos theory and complexity science. The methodology of deductive reasoning under conditions of large data bases in studying human mobility will be questioned as well. In this context more extensive attention is given to ceteris paribus conditions and evolutionary thinking. The relevance of the paper will be illustrated by referring to various spatial applications in different disciplines and different application areas, e.g. in geography, regional science or urban economics.展开更多
The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in detail. With the aid of some numerical simulation tools such as bifurcation diagrams and Poinearé maps, the dif...The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in detail. With the aid of some numerical simulation tools such as bifurcation diagrams and Poinearé maps, the different routes to chaos and various shapes of strange attractors are observed. To characterize chaotic behavior of this oscillator system, the spectrum of Lyapunov exponent and Lyapunov dimension are also employed.展开更多
The risk of violence in psychiatric settings implies the assessment of dynamic predictors to adjust nursing interventions. So as to identify the pattern of aggressive behaviors, assess the dynamic predictors of violen...The risk of violence in psychiatric settings implies the assessment of dynamic predictors to adjust nursing interventions. So as to identify the pattern of aggressive behaviors, assess the dynamic predictors of violence in hospitalized patients, and analyze the predictive qualities of the Brcset Violence Checklist (BVC), an exploratory/descriptive study was conducted in psychiatric wards in Coimbra, Portugal. The instruments used were: the staff observation aggression scale-revised (SOAS-R), visual analogue scale (VAS), and the BVC. For the period of a month, 64 patients with a mean age of 29 years, unemployed, and with psychotic disorders were observed. In this group, 13 people displayed 15 aggressive behaviors of moderate severity, which had consequences for nurses; they were triggered by the denial of something through verbal aggression and controlled by non-restrictive measures. The most common predictors of violence were irritability and boisterousness. It was also concluded that the BVC shows good predictive characteristics (sensitivity and specificity) of violence, thus, it may be considered as a useful and effective instrument to assess the risk of violence and, consequently, to adjust nursing interventions to prevent this phenomenon.展开更多
An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and...An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and meanings are introduced to describe nodes relationship and network states at a time step.Second,some evolution rules for network are formulated when node behaviors of join,exit,routing table update,data retrieval and content index distribution happen with different contextual scene in KAD network.In addition,a lightweight simulator is designed to implement the KDMN model.Moreover,an example of how to use the simulator to simulate the network changes in order to observe the result is described in detail.Finally,the KDMN is applied to analyze the reason for the formation of hot nodes in the BT and eMule network in the experiment.The different evolution principles of local priority,global priority and hybrid random are adopted based on the provision of network protocol of BT and eMule.The result of this experiment demonstrates that there are some hot nodes exist in the KAD network.However,the principle of hybrid random can effectively alleviate the phenomenon that a node is widely linked with others compared with global and local priority.展开更多
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
文摘The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.
基金Project(50639060) supported by the National Natural Science Foundation of ChinaProject(610103002) supported by the State Key Laboratory of Hydroscience and Engineering,Tsinghua University,China
文摘A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.
文摘The thermomechanical behavior of precipitation-hardened aluminum alloy AA7022-T6 was studied using isothermal compression at temperatures of 623−773 K and strain rates of 0.01−1 s^−1.The experimental results indicated that dynamic recrystallization(DRX)is a predominant hot deformation mechanism,especially at elevated temperatures and low strain rates.The modified Johnson−Cook(J−C)and the strain compensated Arrhenius-type models were developed to predict the hot flow behavior under different deformation conditions.The correlation coefficients of modified J−C model and the strain compensated Arrhenius-type models were 0.9914 and 0.9972,respectively,their average relative errors(ARE)were 6.074%and 4.465%,respectively,and their root mean square errors(RMSE)were 10.611 and 1.665 MPa,respectively,indicating that the strain compensated Arrhenius-type model can predict the hot flow stress of AA7022-T6 aluminum alloy with an appropriate accuracy.
基金Project(2016YFB0300802)supported by the National Key Research and Development Program of China。
文摘The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC06400,No.10 JCZDJC23300)
文摘The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.
基金Supported by the National Natural Science Foundation of China(51406031)Jilin City Science and Technology Plan Project(201464055)Jilin Province Education Department Science Research Project(2015-243)
文摘Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
基金Supported by National High Technology Research and Development Program of China ("863" Program,No. 2006AA09A312)National Science and Technology Major Project (No. 2008ZX05027-004-03)
文摘In autonomous underwater vehicles(AUVs) the onboard power used to complete missions is limited.To solve this problem,a landing AUV has been designed,which conserves energy by sitting on the seafloor while monitoring the ocean.In order to study the dynamic behaviors for better control of the AUV,the dynamic analysis of the landing AUV is presented in this paper.Based on the momentum theorem and the angular momentum theorem,the dynamic model of the landing AUV is derived.The simulations of rectilinear motion,rotary motion and helix motion indicate the dynamic behaviors of the AUV.The ocean experiments validate the dynamic model presented in this paper.The experiments also verify that the landing AUV can work for a longer time than common AUVs.
基金supported by National Natural Science Foundation of China under Grant No. 10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309300, National Natural Science Foundation of China under Grant No. 10204020, and the Innovation Funds of the Chinese Academy of Sciences
文摘A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.
文摘The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.
文摘This paper addresses new trends in quantitative geography research. Modern social science research--including economic and social geography--has in the past decades shown an increasing interest in micro-oriented behaviour of actors. This is inter alia clearly reflected in SIMs (spatial interaction models), where discrete choice approaches have assumed a powerful position. This paper aims to provide in particular a concise review of micro-based research, with the aim to review the potential--but also the caveats---of micro models to map out human behaviour. In particular, attention will be devoted to interactive learning principles that shape individual decisions. Lessons from cognitive sciences will be put forward and illustrated, amongst others on the basis of computational neural networks or spatial econometric approaches. Particular attention will be paid to non-linear dynamic spatial models, amongst others, in the context of chaos theory and complexity science. The methodology of deductive reasoning under conditions of large data bases in studying human mobility will be questioned as well. In this context more extensive attention is given to ceteris paribus conditions and evolutionary thinking. The relevance of the paper will be illustrated by referring to various spatial applications in different disciplines and different application areas, e.g. in geography, regional science or urban economics.
基金supported by the National Natural Science Foundation of China under Grant No.10875078the Natural Science Foundation of Zhejiang Province of China under Grant No.Y7080455
文摘The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in detail. With the aid of some numerical simulation tools such as bifurcation diagrams and Poinearé maps, the different routes to chaos and various shapes of strange attractors are observed. To characterize chaotic behavior of this oscillator system, the spectrum of Lyapunov exponent and Lyapunov dimension are also employed.
文摘The risk of violence in psychiatric settings implies the assessment of dynamic predictors to adjust nursing interventions. So as to identify the pattern of aggressive behaviors, assess the dynamic predictors of violence in hospitalized patients, and analyze the predictive qualities of the Brcset Violence Checklist (BVC), an exploratory/descriptive study was conducted in psychiatric wards in Coimbra, Portugal. The instruments used were: the staff observation aggression scale-revised (SOAS-R), visual analogue scale (VAS), and the BVC. For the period of a month, 64 patients with a mean age of 29 years, unemployed, and with psychotic disorders were observed. In this group, 13 people displayed 15 aggressive behaviors of moderate severity, which had consequences for nurses; they were triggered by the denial of something through verbal aggression and controlled by non-restrictive measures. The most common predictors of violence were irritability and boisterousness. It was also concluded that the BVC shows good predictive characteristics (sensitivity and specificity) of violence, thus, it may be considered as a useful and effective instrument to assess the risk of violence and, consequently, to adjust nursing interventions to prevent this phenomenon.
文摘An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and meanings are introduced to describe nodes relationship and network states at a time step.Second,some evolution rules for network are formulated when node behaviors of join,exit,routing table update,data retrieval and content index distribution happen with different contextual scene in KAD network.In addition,a lightweight simulator is designed to implement the KDMN model.Moreover,an example of how to use the simulator to simulate the network changes in order to observe the result is described in detail.Finally,the KDMN is applied to analyze the reason for the formation of hot nodes in the BT and eMule network in the experiment.The different evolution principles of local priority,global priority and hybrid random are adopted based on the provision of network protocol of BT and eMule.The result of this experiment demonstrates that there are some hot nodes exist in the KAD network.However,the principle of hybrid random can effectively alleviate the phenomenon that a node is widely linked with others compared with global and local priority.