The defect formation and annealing behavior in as-grown and electron-irradiated 6H-SiC wafers were investigated by variable-energy slow positron beam. For the n-type as-grown samples, it was found that annealing decre...The defect formation and annealing behavior in as-grown and electron-irradiated 6H-SiC wafers were investigated by variable-energy slow positron beam. For the n-type as-grown samples, it was found that annealing decreased the defect concentration due to recombination with interstitial, and when it was annealed at 1400 ℃ for 30 rain in vacuum, a 20 nm thick Si layer was found on the top of SiC substrate, which is a direct proof of the Si atom diffusing to the surface when annealed at the high temperature stages. During the high temperature annealing stage, we found an obvious surface effect occurred that induced the higher S parameter close to the surface. This may be caused by the diffusion of the Si atoms to the surface during annealing. After 10 MeV electron irradiation of the n-type 6H-SiC, the positron effective diffusion length decreased from 86.2 nm to 39.1 nm. This shows that there are some defects created in n-type 6H-SiC. But in the p-type 6H-SiC irradiated by 10 MeV electrons, the change is very small. This may be because of the opposite charge of the vacancy defects. The same annealing behavior as that of as-grown 6H-SiC samples was also observed for the 1.8 MeV electron-irradiated 6H-SiC samples except that after being annealed at 300 ℃, its defect concentration increased. This may be explained as the generation of carbon vacancies, due to either the recombination between divacancies and silicon interstitial, or the charge of the charge states.展开更多
The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to...The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to provide the fundamental understanding of the stress distribution and degradation mechanism of stone matrix asphalt (SMA) aggregate skeleton. Based on the theoretical analysis, crushing test and superpave gyratory compactor (SGC) test were used to evaluate the degradation behavior of aggregate skeleton of SMA. To verify the laboratory test results, gradation analysis was also conducted for the field materials extracted from SMA pavements after long-time service. The results indicate that the degradation of SMA aggregate skeleton is not random but has fixed internal trend and mechanism. Special rule is found for the graded fine aggregates generated from coarse aggregate breakdown and the variation of 4.75 mm aggregate is found to play a key role in the graded aggregates to form well-balanced skeleton to bear external loading. The variation of 4.75 mm aggregate together with the breakdown ratio of aggregate gradation can be used to characterize the degradation behavior of aggregate skeleton. The crushing test and SGC test are proved to be promising in estimating the degradation behavior of SMA skeleton.展开更多
文摘The defect formation and annealing behavior in as-grown and electron-irradiated 6H-SiC wafers were investigated by variable-energy slow positron beam. For the n-type as-grown samples, it was found that annealing decreased the defect concentration due to recombination with interstitial, and when it was annealed at 1400 ℃ for 30 rain in vacuum, a 20 nm thick Si layer was found on the top of SiC substrate, which is a direct proof of the Si atom diffusing to the surface when annealed at the high temperature stages. During the high temperature annealing stage, we found an obvious surface effect occurred that induced the higher S parameter close to the surface. This may be caused by the diffusion of the Si atoms to the surface during annealing. After 10 MeV electron irradiation of the n-type 6H-SiC, the positron effective diffusion length decreased from 86.2 nm to 39.1 nm. This shows that there are some defects created in n-type 6H-SiC. But in the p-type 6H-SiC irradiated by 10 MeV electrons, the change is very small. This may be because of the opposite charge of the vacancy defects. The same annealing behavior as that of as-grown 6H-SiC samples was also observed for the 1.8 MeV electron-irradiated 6H-SiC samples except that after being annealed at 300 ℃, its defect concentration increased. This may be explained as the generation of carbon vacancies, due to either the recombination between divacancies and silicon interstitial, or the charge of the charge states.
基金Project(51008075) supported by the National Natural Science Foundation of ChinaProject(2006AA11Z110) supported by the National High Technology Research and Development Program of China
文摘The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to provide the fundamental understanding of the stress distribution and degradation mechanism of stone matrix asphalt (SMA) aggregate skeleton. Based on the theoretical analysis, crushing test and superpave gyratory compactor (SGC) test were used to evaluate the degradation behavior of aggregate skeleton of SMA. To verify the laboratory test results, gradation analysis was also conducted for the field materials extracted from SMA pavements after long-time service. The results indicate that the degradation of SMA aggregate skeleton is not random but has fixed internal trend and mechanism. Special rule is found for the graded fine aggregates generated from coarse aggregate breakdown and the variation of 4.75 mm aggregate is found to play a key role in the graded aggregates to form well-balanced skeleton to bear external loading. The variation of 4.75 mm aggregate together with the breakdown ratio of aggregate gradation can be used to characterize the degradation behavior of aggregate skeleton. The crushing test and SGC test are proved to be promising in estimating the degradation behavior of SMA skeleton.