The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First...The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First, the calculated Burgers vector distribution shows that the equilibrium dissociation distance (Ded) and the stacking fault energy (Esf) between two partial edge dislocations are about 25.95 ? and 108 mJ/m2, respectively. Then, the obtained formation energies (Ef) of a He atom at some different sites demonstrate that the He atom is attracted and repelled in the tension and compression regions, respectively. And the He?dislocation interaction reveals that an interstitial He atom plays a more significant role in the dislocation movement than a substitutional He atom. Finally, it is found that the movement of an interstitial He atom is apparent as the first partial dislocation bypasses and the edge dislocation offers fast-diffusion path for the migration of a He atom.展开更多
The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fat...The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fatigue strength as depicted bymaximum stress vs the number of cycles until failure(S-N)curves,by comparison with these original aluminum alloys.Althoughthe fatigue process of the original and budged alloys follows the same mechanism with three distinct steps,namely,crack initiation ata corner of the tested samples,stable crack propagation with typical fatigue striations and finally catastrophic fracture with dimplefractographic features.The typical crack propagation rate vs stress intensity factor range(da/dN-ΔK)curves derived from thespacing of striations reveal a lower crack propagation rate in the bulged specimens.The enhancement of fatigue strength inelectromagnetically bulged aluminum alloy is further rationalized in-depth on the basis of strain hardening and dislocation shieldingeffect.展开更多
The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordere...The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordered solid solutions with second-order phase transformation.The principles of deformation softening and annealing hardening in ordered solid solutions are discussed because of deformation induced structure disordering.It is concluded that the independent slip ability of the partial dislocations and the corresponding low temperature plasticity of ordered solid solutions could be promoted obviously by proper alloying effects,which reduces the anti-phase domain boundary energy,or by maintaining the disordering state into the low temperature range.The similar principles could be also used to modify the low temperature plasticity of other metal based ordered solid solutions.展开更多
Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to trad...Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.展开更多
基金Project(ZL1405)supported by the Talent Project of Lingnan Normal University,China
文摘The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First, the calculated Burgers vector distribution shows that the equilibrium dissociation distance (Ded) and the stacking fault energy (Esf) between two partial edge dislocations are about 25.95 ? and 108 mJ/m2, respectively. Then, the obtained formation energies (Ef) of a He atom at some different sites demonstrate that the He atom is attracted and repelled in the tension and compression regions, respectively. And the He?dislocation interaction reveals that an interstitial He atom plays a more significant role in the dislocation movement than a substitutional He atom. Finally, it is found that the movement of an interstitial He atom is apparent as the first partial dislocation bypasses and the edge dislocation offers fast-diffusion path for the migration of a He atom.
基金Project(2011CB012806) supported by the National Basic Research Program of China
文摘The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fatigue strength as depicted bymaximum stress vs the number of cycles until failure(S-N)curves,by comparison with these original aluminum alloys.Althoughthe fatigue process of the original and budged alloys follows the same mechanism with three distinct steps,namely,crack initiation ata corner of the tested samples,stable crack propagation with typical fatigue striations and finally catastrophic fracture with dimplefractographic features.The typical crack propagation rate vs stress intensity factor range(da/dN-ΔK)curves derived from thespacing of striations reveal a lower crack propagation rate in the bulged specimens.The enhancement of fatigue strength inelectromagnetically bulged aluminum alloy is further rationalized in-depth on the basis of strain hardening and dislocation shieldingeffect.
基金supported by the Independent Research Project of the State Key Laboratory for Advanced Metals and Materials (Grant No. 2010z-12)
文摘The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordered solid solutions with second-order phase transformation.The principles of deformation softening and annealing hardening in ordered solid solutions are discussed because of deformation induced structure disordering.It is concluded that the independent slip ability of the partial dislocations and the corresponding low temperature plasticity of ordered solid solutions could be promoted obviously by proper alloying effects,which reduces the anti-phase domain boundary energy,or by maintaining the disordering state into the low temperature range.The similar principles could be also used to modify the low temperature plasticity of other metal based ordered solid solutions.
基金financially supported by the Budget for Nuclear Research of the Ministryof Education,Culture,Sports,Science and Technology,based on the screening and counseling by the Atomic Energy Commission of Japan
文摘Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.