本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人...本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人跟踪算法。跟踪过程中由分类滤波器和搜索区域进行卷积操作得到响应图,通过响应图判断跟踪状态,跟踪状态分为弱响应状态、多峰强响应状态、单峰强响应状态。针对多峰强响应状态下的干扰物影响,提出在线更新策略,利用激励和抑制损失更新分类滤波器,提高分类滤波器的判别能力。针对多峰强响应和弱响应状态下目标预测不准确的问题,通过偏移量和增添候选框修正目标位置,提高跟踪精度。实验验证提出的算法在行人视频序列上跟踪结果,精度达到了0.978,成功率达到了0.740,在NVIDIA GTX 1650显卡下有30 fps的实时速度。展开更多
文摘本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction for tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人跟踪算法。跟踪过程中由分类滤波器和搜索区域进行卷积操作得到响应图,通过响应图判断跟踪状态,跟踪状态分为弱响应状态、多峰强响应状态、单峰强响应状态。针对多峰强响应状态下的干扰物影响,提出在线更新策略,利用激励和抑制损失更新分类滤波器,提高分类滤波器的判别能力。针对多峰强响应和弱响应状态下目标预测不准确的问题,通过偏移量和增添候选框修正目标位置,提高跟踪精度。实验验证提出的算法在行人视频序列上跟踪结果,精度达到了0.978,成功率达到了0.740,在NVIDIA GTX 1650显卡下有30 fps的实时速度。