The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op...The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.展开更多
The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanni...The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.展开更多
For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the metho...For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems.Ten exact explicit parametric representations of the traveling wave solutions are given.展开更多
The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system an...The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.展开更多
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the ch...Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.展开更多
Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop...Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.展开更多
The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome t...The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome the disadvantages,a new kind of single-mode powertrain has been proposed.The power-split hybrid powertrain is composed of three planetary gear(PG)sets connected to one engine,left and right track outputs,and three motors.The proposed powertrain can realize steering while going forward by controlling the output torque on each side without extra steering mechanism or steering shaft.Due to the diversity of the connection way between components and planetary gear sets,a rapid configuration design approach is proposed for the design selection of HTV.The automated dynamic modelling method can show the one-to-one correspondence with the selected feasible groups by establishing two characteristic matrices,which is more simple than other researches.The analytically-based method is proposed to classify all possible connection designs into several groups to decrease the searching scope with improved design efficiency.Finally,the optimal control strategy is used to find the design with optimal fuel economy under typical condition of HTV.The case study is implemented by the proposed design approach which demonstrates better design performances compared with the existing series-hybrid HTV.展开更多
In this paper, we introduce a modified small-world network added with new links with preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. Several dynami...In this paper, we introduce a modified small-world network added with new links with preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. Several dynamical character of the model such as the evolution graph, fo avalanche, the critical exponent D and T, and the distribution of mutation times of all the nodes, show particular behaviors different from those of the model based on the regular network and the small-world network.展开更多
Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection p...Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection policy of the lead-acid battery, the zinc-air power battery was proposed to solve the problem in this paper. The advantage and the feasibility of developing zinc-air power batteries in China have been illustrated in the paper. And, it is represented that development of electric bicycles powered by the zinc-air power battery also can accelerate this kind of battery's development in other electric vehicles, which is favorable to economic development and environmental protection.展开更多
Generally, in the literature, the hydrodynamic behavior of an EGSB (expanded granular sludge bed) reactor is considered as a complete mix reactor. Few works study in detail the flow of such reactors. The aim of this...Generally, in the literature, the hydrodynamic behavior of an EGSB (expanded granular sludge bed) reactor is considered as a complete mix reactor. Few works study in detail the flow of such reactors. The aim of this work was to study, in detail, the hydrodynamics of an EGSB reactor and to propose a mathematical model to describe its flow. A 3.04 L reactor was used with HRT (hydraulic retention time) of 12 h, affluent flowrate of 4 mL·min^-1, and the recirculation flow rate was changed to study three different upflow velocities in the tube (6, 8 and 10 m·h^-1. The pulse input method was used, with the use of blue dextran as tracer. In order to consider the dimensional differences between the tube and the separator, the reactor was divided into two regions (tube and separator). Initially, a model with two tubular reactors with dispersion in series was proposed and the Peclet number was adjusted for the two regions. It was observed that the region of the tube shows the behavior of a tubular reactor with high dispersion, whereas the region of the separator shows the behavior of a complete mix reactor. In order to simplify the equation, and by knowing that the concentration profile along the reactor was almost constant, a model of two CSTRs (continuous stirred tank reactors) was proposed in series and the number of reactors (N) was set. The best combination was five CSTRs, three in the tube region and two in the separator region. The presented models were equivalent and can be used to describe the hydrodynamic behavior of the EGSB reactor.展开更多
A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species ...A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj^v and ky respectively, where ν(ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory: The form of the aggregate size distribution of A-species αk(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of ν ≤O, the form of ak (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν 〉 0, the form of αk(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.展开更多
The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Para...The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.展开更多
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ...Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.展开更多
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
基金The National Natural Science Foundation of China(No.51508257,51668042,51578274)the Yangtze River Scholar and the Innovation Team of M inistry of Education(No.IRT13068)the Scientific Research Project of Gansu Higher Education(No.2015B-34)
文摘The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.
文摘The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.
基金Supported by the Natural Science Foundation of Ningbo under Grant No. 2008A610029
文摘For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems.Ten exact explicit parametric representations of the traveling wave solutions are given.
基金The Fundamental Research Funds for the Central Universities(No.3202003905)Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0080)
文摘The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.
文摘Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.
文摘Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.
基金Project(CIT&TCD20190304)supported by the Beijing Great Scholars Program,China。
文摘The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome the disadvantages,a new kind of single-mode powertrain has been proposed.The power-split hybrid powertrain is composed of three planetary gear(PG)sets connected to one engine,left and right track outputs,and three motors.The proposed powertrain can realize steering while going forward by controlling the output torque on each side without extra steering mechanism or steering shaft.Due to the diversity of the connection way between components and planetary gear sets,a rapid configuration design approach is proposed for the design selection of HTV.The automated dynamic modelling method can show the one-to-one correspondence with the selected feasible groups by establishing two characteristic matrices,which is more simple than other researches.The analytically-based method is proposed to classify all possible connection designs into several groups to decrease the searching scope with improved design efficiency.Finally,the optimal control strategy is used to find the design with optimal fuel economy under typical condition of HTV.The case study is implemented by the proposed design approach which demonstrates better design performances compared with the existing series-hybrid HTV.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China under Grant No. 2002055009
文摘In this paper, we introduce a modified small-world network added with new links with preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. Several dynamical character of the model such as the evolution graph, fo avalanche, the critical exponent D and T, and the distribution of mutation times of all the nodes, show particular behaviors different from those of the model based on the regular network and the small-world network.
基金Anhui Exploitation Fund of Person with Ability( 2006Z029).
文摘Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection policy of the lead-acid battery, the zinc-air power battery was proposed to solve the problem in this paper. The advantage and the feasibility of developing zinc-air power batteries in China have been illustrated in the paper. And, it is represented that development of electric bicycles powered by the zinc-air power battery also can accelerate this kind of battery's development in other electric vehicles, which is favorable to economic development and environmental protection.
文摘Generally, in the literature, the hydrodynamic behavior of an EGSB (expanded granular sludge bed) reactor is considered as a complete mix reactor. Few works study in detail the flow of such reactors. The aim of this work was to study, in detail, the hydrodynamics of an EGSB reactor and to propose a mathematical model to describe its flow. A 3.04 L reactor was used with HRT (hydraulic retention time) of 12 h, affluent flowrate of 4 mL·min^-1, and the recirculation flow rate was changed to study three different upflow velocities in the tube (6, 8 and 10 m·h^-1. The pulse input method was used, with the use of blue dextran as tracer. In order to consider the dimensional differences between the tube and the separator, the reactor was divided into two regions (tube and separator). Initially, a model with two tubular reactors with dispersion in series was proposed and the Peclet number was adjusted for the two regions. It was observed that the region of the tube shows the behavior of a tubular reactor with high dispersion, whereas the region of the separator shows the behavior of a complete mix reactor. In order to simplify the equation, and by knowing that the concentration profile along the reactor was almost constant, a model of two CSTRs (continuous stirred tank reactors) was proposed in series and the number of reactors (N) was set. The best combination was five CSTRs, three in the tube region and two in the separator region. The presented models were equivalent and can be used to describe the hydrodynamic behavior of the EGSB reactor.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10275048,10305009,and 10875086by the Zhejiang Provincial Natural Science Foundation of China under Grant No.102067
文摘A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj^v and ky respectively, where ν(ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory: The form of the aggregate size distribution of A-species αk(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of ν ≤O, the form of ak (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν 〉 0, the form of αk(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.
基金Project(50475106)supported by the National Natural Science Foundation of China
文摘The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.
基金support of JASSO to conduct this research work during the author’s stay at Japan
文摘Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.