期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
带最大熵修正的行动者评论家算法 被引量:5
1
作者 姜玉斌 刘全 胡智慧 《计算机学报》 EI CSCD 北大核心 2020年第10期1897-1908,共12页
在行动者评论家算法中,策略梯度通常使用最大熵正则项来提高行动策略的随机性以保证探索.策略的随机使Agent能够遍历所有动作,但是会造成值函数的低估并影响算法的收敛速度与稳定性.针对策略梯度中最大熵正则项带来的低估问题,提出最大... 在行动者评论家算法中,策略梯度通常使用最大熵正则项来提高行动策略的随机性以保证探索.策略的随机使Agent能够遍历所有动作,但是会造成值函数的低估并影响算法的收敛速度与稳定性.针对策略梯度中最大熵正则项带来的低估问题,提出最大熵修正(Maximum-Entropy Correction,MEC)算法.该算法有两个特点:(1)利用状态值函数与策略函数构造一种状态动作值函数的估计,构造的状态动作值函数符合真实值函数的分布;(2)将贝尔曼最优方程与构造的状态动作值函数结合作为MEC算法的目标函数.通过使用新的目标函数,MEC算法可以解决使用最大熵正则项带来的性能下降与不稳定.为了验证算法的有效性,将该算法与近似策略优化算法以及优势行动者评论家算法在Atari 2600游戏平台进行比较实验.实验结果表明,MEC在改进性能的同时提高了算法的稳定性. 展开更多
关键词 强化学习 深度学习 行动者评论家算法 最大熵 策略梯度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部