The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical technique...The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.展开更多
This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary...This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary layer,LES approach has been used to simulate the flows over compression corners and incident shock waves,revealing that turbulent flows would significantly inhibit the boundary layer separation caused by shock wave-boundary layer interaction(SWBLI).The boundary layer transition over a circular cone has been analyzed through stability analysis and wind-tunnel test,by which the angle-of-attack effect in case of small angle of attack has been studied.Non-linear evolution process and secondary instability structure in the supersonic mixing layer(Mc=0.5) were initially figured out through the study of mixing layer,and knowledge of the flow control mechanism of the boundary layer and mixing enhancement mechanism of the mixing layer has been obtained through this research.Artificial boundary-layer transition technique based on subharmonic resonance has been proposed and applied to the flow control in a scramjet inlet,inhibiting the flow separation of the boundary layer while improving the inlet performance.To guarantee the mixing of kerosene and supersonic airflow in the scramjet combustor,the mixing enhancement method based on subharmonic resonance has been adopted and a concept of combustor with smooth wall and low internal drag has been proposed for ignition and stable combustion.Finally,future turbulence research and technological development of aerospace vehicles is predicted.展开更多
The effect of plasma actuator that uses saw-tooth or sine-wave shape electrodes on boundary layer flows is experimentally investigated.The measurement results are compared with a corresponding standard configuration (...The effect of plasma actuator that uses saw-tooth or sine-wave shape electrodes on boundary layer flows is experimentally investigated.The measurement results are compared with a corresponding standard configuration (conventional design using two rectangular strip electrodes)-the actuator that produces a nearly two-dimensional horizontal wall jet upon actuation.PIV measurements are used to characterize the actuators in a quiescent chamber.Operating in a steady manner,the new actuators result in the formation of streamwise and spanwise vortices.That is to say,the new actuators render the plasma actuators inducing three-dimensional variations in the shear layer,offering significant flexibility in flow control.The affected flowfield with the new actuators is significantly larger than that with the conventional linear actuators.While the conventional linear actuators affect primarily the boundary layer flow on a scale of about 1 cm above the wall,the new actuators affect the near wall region at a significantly larger scale.This new design broadens the applicability and enhances the flow control effects and it is potentially a more efficient flow control device.展开更多
The Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions is considered.The existence of the global attractor is proved and the long time behavior of the trajectories,namely,the convergence ...The Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions is considered.The existence of the global attractor is proved and the long time behavior of the trajectories,namely,the convergence to steady states,is studied.展开更多
A new simple piecewise linear map of the plane is presented and analyzed, then a detailed study of its dynamical behaviour is described, along with some other dynamical phenomena, especially fixed points and their sta...A new simple piecewise linear map of the plane is presented and analyzed, then a detailed study of its dynamical behaviour is described, along with some other dynamical phenomena, especially fixed points and their stability, observation of a new chaotic attractors obtained via border collision bifurcation. An important resuk about coexisting chaotic attractors is also numerically studied and discussed.展开更多
文摘The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.
文摘This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary layer,LES approach has been used to simulate the flows over compression corners and incident shock waves,revealing that turbulent flows would significantly inhibit the boundary layer separation caused by shock wave-boundary layer interaction(SWBLI).The boundary layer transition over a circular cone has been analyzed through stability analysis and wind-tunnel test,by which the angle-of-attack effect in case of small angle of attack has been studied.Non-linear evolution process and secondary instability structure in the supersonic mixing layer(Mc=0.5) were initially figured out through the study of mixing layer,and knowledge of the flow control mechanism of the boundary layer and mixing enhancement mechanism of the mixing layer has been obtained through this research.Artificial boundary-layer transition technique based on subharmonic resonance has been proposed and applied to the flow control in a scramjet inlet,inhibiting the flow separation of the boundary layer while improving the inlet performance.To guarantee the mixing of kerosene and supersonic airflow in the scramjet combustor,the mixing enhancement method based on subharmonic resonance has been adopted and a concept of combustor with smooth wall and low internal drag has been proposed for ignition and stable combustion.Finally,future turbulence research and technological development of aerospace vehicles is predicted.
基金supported by the National Natural Science Foundation of China (Grant No. 20091310918)
文摘The effect of plasma actuator that uses saw-tooth or sine-wave shape electrodes on boundary layer flows is experimentally investigated.The measurement results are compared with a corresponding standard configuration (conventional design using two rectangular strip electrodes)-the actuator that produces a nearly two-dimensional horizontal wall jet upon actuation.PIV measurements are used to characterize the actuators in a quiescent chamber.Operating in a steady manner,the new actuators result in the formation of streamwise and spanwise vortices.That is to say,the new actuators render the plasma actuators inducing three-dimensional variations in the shear layer,offering significant flexibility in flow control.The affected flowfield with the new actuators is significantly larger than that with the conventional linear actuators.While the conventional linear actuators affect primarily the boundary layer flow on a scale of about 1 cm above the wall,the new actuators affect the near wall region at a significantly larger scale.This new design broadens the applicability and enhances the flow control effects and it is potentially a more efficient flow control device.
文摘The Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions is considered.The existence of the global attractor is proved and the long time behavior of the trajectories,namely,the convergence to steady states,is studied.
文摘A new simple piecewise linear map of the plane is presented and analyzed, then a detailed study of its dynamical behaviour is described, along with some other dynamical phenomena, especially fixed points and their stability, observation of a new chaotic attractors obtained via border collision bifurcation. An important resuk about coexisting chaotic attractors is also numerically studied and discussed.