The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urba...The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urban trips. Traffic corridor is a major scenario that supports travellers to commute from suburban residential areas to central working areas. Studying their modal choice behaviour is receiving more and more interests. On one hand, it will guide the travellers to rationally choose their most economic and beneficial mode for urban trips. On the other hand, it will help traffic operators to make more appropriate policies to enhance the share of public transit in order to alleviate the traffic congestion and produce more economic and social benefits. To analyze the travel modal choice, a generalized cost model for three typical modes is first established to evaluate each different travel alternative. Then, random utility theory(RUT) and decision field theory(DFT) are introduced to describe the decision-making process how travellers make their mode choices. Further, some important factors that may influence the modal choice behaviour are discussed as well. To test the feasibility of the proposed model, a field test in Beijing was conducted to collect the real-time data and estimate the model parameters. The improvements in the test results and analysis show new advances in the development of travel mode choice on multimodal transportation networks.展开更多
A good understanding of pedestrian movement in the transfer corridor is vital for the planning and design of the station,especially for efficiency and safety.A multi-force vector grid model was presented to simulate t...A good understanding of pedestrian movement in the transfer corridor is vital for the planning and design of the station,especially for efficiency and safety.A multi-force vector grid model was presented to simulate the movement of bidirectional pedestrian flow based on cellular automata and forces between pedestrians.The model improves rule-based characteristics of cellular automata,details forces between pedestrians and solves pedestrian collisions by a several-step updating method to simulate pedestrian movements.Two general scenarios in corridor were simulated.One is bidirectional pedestrian flow simulation with isolation facility,and the other is bidirectional pedestrian flow simulation without isolation facility,where there exists disturbance in the middle.Through simulation,some facts can be seen that pedestrians in the case with isolation facility have the largest speed and pedestrians in the case without isolation facility have the smallest speed; pedestrians in the case of unidirectional flow have the largest volume and pedestrians in the case of without isolation facility have the smallest volume.展开更多
基金Project(2012CB725405)supported in part by National Basic Research Program of ChinaProject(2014BAG03B01)supported by the National Science and Technology Support Program,China+1 种基金Project(71301083)supported by the National Natural Science Foundation of ChinaProject(20131089307)supported by the Project Supported by Tsinghua University,China
文摘The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urban trips. Traffic corridor is a major scenario that supports travellers to commute from suburban residential areas to central working areas. Studying their modal choice behaviour is receiving more and more interests. On one hand, it will guide the travellers to rationally choose their most economic and beneficial mode for urban trips. On the other hand, it will help traffic operators to make more appropriate policies to enhance the share of public transit in order to alleviate the traffic congestion and produce more economic and social benefits. To analyze the travel modal choice, a generalized cost model for three typical modes is first established to evaluate each different travel alternative. Then, random utility theory(RUT) and decision field theory(DFT) are introduced to describe the decision-making process how travellers make their mode choices. Further, some important factors that may influence the modal choice behaviour are discussed as well. To test the feasibility of the proposed model, a field test in Beijing was conducted to collect the real-time data and estimate the model parameters. The improvements in the test results and analysis show new advances in the development of travel mode choice on multimodal transportation networks.
基金Project(51238008)supported by the National Natural Science Foundation of ChinaProject(CXZZ13_0116)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(YBJJ1344)supported by the Scientific Research Foundations of Graduate School of Southeast University,China
文摘A good understanding of pedestrian movement in the transfer corridor is vital for the planning and design of the station,especially for efficiency and safety.A multi-force vector grid model was presented to simulate the movement of bidirectional pedestrian flow based on cellular automata and forces between pedestrians.The model improves rule-based characteristics of cellular automata,details forces between pedestrians and solves pedestrian collisions by a several-step updating method to simulate pedestrian movements.Two general scenarios in corridor were simulated.One is bidirectional pedestrian flow simulation with isolation facility,and the other is bidirectional pedestrian flow simulation without isolation facility,where there exists disturbance in the middle.Through simulation,some facts can be seen that pedestrians in the case with isolation facility have the largest speed and pedestrians in the case without isolation facility have the smallest speed; pedestrians in the case of unidirectional flow have the largest volume and pedestrians in the case of without isolation facility have the smallest volume.