In recent years, there has been an increasing interest in wood properties, because wood is a commonly used and advanced building material. In this paper, the effect of anatomical characters on the transverse fracture ...In recent years, there has been an increasing interest in wood properties, because wood is a commonly used and advanced building material. In this paper, the effect of anatomical characters on the transverse fracture properties of green wood was investigated. The specific fracture energy (Gf J/m2) of ash (Fraxinus excelsior), cherry (Prunus avium) and birch (Betula pendula) was evaluated using double edge notched tensile tests. The tests were performed on both earlywood (EW) and latewood (LW) zones in both the radial-tangential (RT) and the tangential-radial (TR) crack propagation systems. Wood anatomy and the failure patterns of each species were also investigated using environmental scanning electron microscopy (ESEM) and light microscopy (LMC). The results showed that the Gfof RT fracture systems was around 1.5 times greater than in the TR one, whereas there were no significant differences between EW and LW zones. ESEM micrographs showed that the RT fracture system had a rougher fracture surface, while the TR had a nearly smooth and fiat fracture surface. In particular, the wood ofF. excelsior was the toughest, because of its greater percentage of rays and homogenous distribution of ray cells, while P. avium and B. pendula showed a lower Gf due to their smaller percentage of rays with a distinctive arrangement of ray cells.展开更多
Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry slid...Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10-220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy(SEM) and energy-dispersive X-ray microanalysis(EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.展开更多
文摘In recent years, there has been an increasing interest in wood properties, because wood is a commonly used and advanced building material. In this paper, the effect of anatomical characters on the transverse fracture properties of green wood was investigated. The specific fracture energy (Gf J/m2) of ash (Fraxinus excelsior), cherry (Prunus avium) and birch (Betula pendula) was evaluated using double edge notched tensile tests. The tests were performed on both earlywood (EW) and latewood (LW) zones in both the radial-tangential (RT) and the tangential-radial (TR) crack propagation systems. Wood anatomy and the failure patterns of each species were also investigated using environmental scanning electron microscopy (ESEM) and light microscopy (LMC). The results showed that the Gfof RT fracture systems was around 1.5 times greater than in the TR one, whereas there were no significant differences between EW and LW zones. ESEM micrographs showed that the RT fracture system had a rougher fracture surface, while the TR had a nearly smooth and fiat fracture surface. In particular, the wood ofF. excelsior was the toughest, because of its greater percentage of rays and homogenous distribution of ray cells, while P. avium and B. pendula showed a lower Gf due to their smaller percentage of rays with a distinctive arrangement of ray cells.
基金Project(2013GK3021)supported by the Science and Technology Plan of Hunan Province,ChinaProject supported by Young Teacher Growth Plan of Hunan University,China
文摘Al-Si/15%SiCp(volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy(OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10-220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy(SEM) and energy-dispersive X-ray microanalysis(EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.