混合动力汽车(hybrid electric vehicle,HEV)发动机启停过程伴随的转矩脉动,易诱发车辆传动系扭振,导致车辆动力不平顺。为解决上述问题,提出并验证基于电磁阻尼自适应模糊控制的传动系扭振主动控制方法。建立行星混联式混合动力汽车发...混合动力汽车(hybrid electric vehicle,HEV)发动机启停过程伴随的转矩脉动,易诱发车辆传动系扭振,导致车辆动力不平顺。为解决上述问题,提出并验证基于电磁阻尼自适应模糊控制的传动系扭振主动控制方法。建立行星混联式混合动力汽车发动机启停工况动力学仿真模型和发动机启停控制逻辑,提出发动机启停扭振自适应模糊控制策略,开展2种运行状态下发动机启停工况仿真,对比分析无控制和自适应模糊控制下传动系扭转振动响应曲线。结果表明,自适应模糊控制相比无控制状态:定置停车时发动机启动和停机工况扭振平均衰减率分别为23.8%和30.1%,车辆行进间发动机启动和停机工况扭振平均衰减率分别为12.1%和23.6%。该方法可有效衰减发动机启停工况传动系扭转振动,提升混合动力汽车发动机启停工况NVH(noise,vibration,and harshness)性能。展开更多
文摘混合动力汽车(hybrid electric vehicle,HEV)发动机启停过程伴随的转矩脉动,易诱发车辆传动系扭振,导致车辆动力不平顺。为解决上述问题,提出并验证基于电磁阻尼自适应模糊控制的传动系扭振主动控制方法。建立行星混联式混合动力汽车发动机启停工况动力学仿真模型和发动机启停控制逻辑,提出发动机启停扭振自适应模糊控制策略,开展2种运行状态下发动机启停工况仿真,对比分析无控制和自适应模糊控制下传动系扭转振动响应曲线。结果表明,自适应模糊控制相比无控制状态:定置停车时发动机启动和停机工况扭振平均衰减率分别为23.8%和30.1%,车辆行进间发动机启动和停机工况扭振平均衰减率分别为12.1%和23.6%。该方法可有效衰减发动机启停工况传动系扭转振动,提升混合动力汽车发动机启停工况NVH(noise,vibration,and harshness)性能。