The escape time of a given species of partlcles in the planetary atmosphere is related to atmospheric temperature. The mean temperature at the planet surface may be inferred from the escape of a given kind of particle...The escape time of a given species of partlcles in the planetary atmosphere is related to atmospheric temperature. The mean temperature at the planet surface may be inferred from the escape of a given kind of particles in the planetary atmosphere. For example, CH4 escaping from the Pluto atmosphere results in the variation of its partial pressure and escape time, then the mean temperature at the Pluto surface, 42.2 K, is got on the barns of it.展开更多
Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad s...Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.展开更多
The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect...The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.展开更多
文摘The escape time of a given species of partlcles in the planetary atmosphere is related to atmospheric temperature. The mean temperature at the planet surface may be inferred from the escape of a given kind of particles in the planetary atmosphere. For example, CH4 escaping from the Pluto atmosphere results in the variation of its partial pressure and escape time, then the mean temperature at the Pluto surface, 42.2 K, is got on the barns of it.
基金supported jointly by the National Natural Science Foundation of China (40975039)the National Basic Research Program of China (2006CB403602 and 2009BAC51B04)
文摘Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007,this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale.The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs.Forced by seasonal variations in solar radiation,the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs,which are active and shift over the tropical North Pacific,the tropical North Atlantic,and the tropical South Indian oceans.The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation.During the boreal summer,five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region.In total,22 troughs,nine monsoon troughs,and 19 ACAs in the lower troposphere were identified.Relevant ACAs may be useful in constructing regional monsoon and circulation indices.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)
文摘The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.