The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; howev...The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.展开更多
We study the interaction between the Moon and the solar wind through a three-dimensional MHD simulation.Three cases have been discussed in which the interplanetary magnetic field lies at 90,180,and 135 to the solar wi...We study the interaction between the Moon and the solar wind through a three-dimensional MHD simulation.Three cases have been discussed in which the interplanetary magnetic field lies at 90,180,and 135 to the solar wind flow,respectively.A wake with low density and low pressure can always be formed behind the Moon.The plasma temperature and magnetic field are enhanced in the central wake,but the field strength is reduced in the surrounding region.A Mach cone is formed by rarefaction waves emanating from the limb.These rarefaction waves propagate via the fast magnetosonic mode with different velocities in different directions relative to the magnetic field.When the interplanetary magnetic field is not parallel to the solar wind flow,the wake shows some asymmetries,with an acceleration region turning up at the center.Finally,the results are compared with the observations by WIND spacecraft.Our calculations agree reasonably well with the observed values.展开更多
基金jointly sponsored by the "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA-05110303)the Opening Fund of Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, CAS, the National Basic Research Program of China (Grant No.2010CB951703)the Social Common Weal Profession Research Program of Chinese Ministry of Finance/Ministry of Science and Technology (Grant No. GYHY201006014)
文摘The planetary boundary layer (PBL) scheme in the regional climate model (RCM) has a significant impact on the interactions and exchanges of moisture, momentum, and energy between land, ocean, and atmosphere; however, its uncertainty will cause large systematic biases of RCM. Based on the four different PBL schemes (YSU, ACM2, Boulac, and MYJ) in Weather Research and Forecasting (WRF) model, the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon (EASM) are investigated. The simulated results of the two local turbulent kinetic energy (TKE) schemes, Boulac and MYJ, are more consistent with the observations than those in the two nonlocal closure schemes, YSU and ACM2. The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high (WPSH) than the latter. As to the modeling of summer monsoon precipitation, both the spatial distributions and temporal evolutions from Boulac and MTT are also better than those in YSU and ACM2 schemes. In addition, through the comparison between YSU and Boulac experiments, the differences from the results of EASM simulation are more obvious over the oceanic area. In the experiments with the nonlocal schemes YSU and ACM2, the boundary layer mixing processes are much stronger, which lead to produce more sea surface latent heat flux and enhanced convection, and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation. With the further study, it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean. Consequently, there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation, if an ocean model coupled into WRF.
基金supported by National Natural Science Foundation of China(Grant No.40974108)
文摘We study the interaction between the Moon and the solar wind through a three-dimensional MHD simulation.Three cases have been discussed in which the interplanetary magnetic field lies at 90,180,and 135 to the solar wind flow,respectively.A wake with low density and low pressure can always be formed behind the Moon.The plasma temperature and magnetic field are enhanced in the central wake,but the field strength is reduced in the surrounding region.A Mach cone is formed by rarefaction waves emanating from the limb.These rarefaction waves propagate via the fast magnetosonic mode with different velocities in different directions relative to the magnetic field.When the interplanetary magnetic field is not parallel to the solar wind flow,the wake shows some asymmetries,with an acceleration region turning up at the center.Finally,the results are compared with the observations by WIND spacecraft.Our calculations agree reasonably well with the observed values.