In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that ...In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative- definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivaiued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically展开更多
Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure ...Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.展开更多
Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel ...Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
In this letter, we present a novel approach of valve stiction detection using wavelet technology. A new non-invasive method is developed with the closed-loop normal operating data. The redundant dyadic discrete wavele...In this letter, we present a novel approach of valve stiction detection using wavelet technology. A new non-invasive method is developed with the closed-loop normal operating data. The redundant dyadic discrete wavelet transform is used to decompose the data at different resolution scales. Based on the Lipschitz regularity theory, wavelet coefficients analysis across scales is performed to detect the jumps in the controlled variables. Adaptive wavelet de-noising is then applied to the data. Features of the valve stiction patterns are extracted from the de-noised data and the valve stiction probability is calculated.展开更多
The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical ...The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.展开更多
文摘In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative- definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivaiued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically
基金supported by the National Basic Research Program of China (973Program) (Grant No. 2010CB428603)the National Natural Science Foundation of China (Grant Nos. 40805017 and 41175041)
文摘Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.
基金National Natural Science Foundation of China(60671027)Sichuan Province Basic Research Project(07JY029-089)
文摘Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
基金Supported by the National High-Tech Research and De-velopment Plan (863) of China (No.2006AA01Z232, No.2009AA01Z212, No.200901Z202)the Natural Science Foundation of Jiangsu Province (No. BK2007603)+2 种基金High-Tech Research Plan of Jiangsu Province (No.BG2007045)Research Climbing Project of NJUPT (No.NY2007044)Foundation of Nanjing University of Information Science and Technology(No.20070025)
文摘In this letter, we present a novel approach of valve stiction detection using wavelet technology. A new non-invasive method is developed with the closed-loop normal operating data. The redundant dyadic discrete wavelet transform is used to decompose the data at different resolution scales. Based on the Lipschitz regularity theory, wavelet coefficients analysis across scales is performed to detect the jumps in the controlled variables. Adaptive wavelet de-noising is then applied to the data. Features of the valve stiction patterns are extracted from the de-noised data and the valve stiction probability is calculated.
文摘The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.