期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
磁场中旋转圆板的磁弹性行波动力学分析
1
作者 胡宇达 施红勃 《振动工程学报》 EI CSCD 北大核心 2017年第1期20-27,共8页
研究磁场作用下导电旋转圆形薄板的行波动力学特性问题。根据哈密顿原理推导出磁场作用下旋转运动圆板的磁弹性振动控制方程,根据边界条件设定行波特性振型函数,应用伽辽金积分得到了行波动力学特征方程。通过算例分析旋转运动圆板在磁... 研究磁场作用下导电旋转圆形薄板的行波动力学特性问题。根据哈密顿原理推导出磁场作用下旋转运动圆板的磁弹性振动控制方程,根据边界条件设定行波特性振型函数,应用伽辽金积分得到了行波动力学特征方程。通过算例分析旋转运动圆板在磁场作用下的前、后行波振动频率变化和各阶模态的临界转速与振动失稳问题,并得到了圆形薄板临界转速对应各阶模态的变化规律,分析了不同磁场强度对各阶模态振动频率的影响曲线和不同振动模态阻尼的变化曲线,以及相同磁场作用下旋转圆板厚度变化对振动频率和临界转速的影响曲线。结果表明:磁场、转速、板厚等参数对旋转圆板的行波振动有显著影响。 展开更多
关键词 行波动力学 导电圆板 磁弹性 旋转运动
下载PDF
空间灾害性扰动事件数值预报初探——行星际激波动力学问题6步求解法
2
作者 冯学尚 魏奉思 《吉首大学学报》 CAS 2000年第1期13-17,共5页
空间灾害性天气的预报是日地物理学界及高科技领域的热门话题 .未来预测太阳剧烈扰动所造成的行星际风暴到达地球空间的状态势必借助于数值方法 .浅析了空间灾害性扰动事件数值预报存在的问题及未来设想 ,针对这一目的对一维球对称问题... 空间灾害性天气的预报是日地物理学界及高科技领域的热门话题 .未来预测太阳剧烈扰动所造成的行星际风暴到达地球空间的状态势必借助于数值方法 .浅析了空间灾害性扰动事件数值预报存在的问题及未来设想 ,针对这一目的对一维球对称问题提出了处理行星际激波的 6步求解方法 ,指出未来空间灾害性扰动事件预报模式应是一个基于三维的以真实太阳风为背景自洽建立起来的、以太阳等离子体输出及磁场全球结构为初边值、太阳、行星际、地磁因果耦合模式 . 展开更多
关键词 空间灾害性扰动事件 数值预报 六步法 星际激波动力学 空间天气预报 星际风暴
下载PDF
压电智能桁架结构/控制系统的波动分析及优化设计 被引量:2
3
作者 徐斌 任建亭 +1 位作者 姜节胜 顾松年 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第1期72-75,共4页
基于波动的观点 ,分析了压电智能桁架结构 /控制系统的行波动力学模型 ,并从能量观点进行控制器设计。结构单元中传播的波在节点处反射、散射 ,考虑节点处的位移和力的边界条件 ,将局部波动模型合并成总体模型 ,并相应建立了结构 /控制... 基于波动的观点 ,分析了压电智能桁架结构 /控制系统的行波动力学模型 ,并从能量观点进行控制器设计。结构单元中传播的波在节点处反射、散射 ,考虑节点处的位移和力的边界条件 ,将局部波动模型合并成总体模型 ,并相应建立了结构 /控制系统的一体化优化设计模型。数值算例的结果表明 。 展开更多
关键词 压电智能桁架 结构/控制系统 波动分析 优化设计 行波动力学模型 结构动力学
下载PDF
Bifurcations of Exact Traveling Wave Solutions for(2+1)-Dimensional HNLS Equation 被引量:1
4
作者 XU Yuan-Fen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第1期68-70,共3页
For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the metho... For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems.Ten exact explicit parametric representations of the traveling wave solutions are given. 展开更多
关键词 planar dynamical system periodic wave solution solitary wave solution (2+1)-DimensionalHNLS equation
下载PDF
New Exact Solutions and Dynamics in(3+1)-Dimensional Gross–Pitaevskii Equation with Repulsive Harmonic Potential 被引量:1
5
作者 王晓丽 武振华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第5期583-589,共7页
Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the(3+1)-dimensional Gross–Pitaevskii equation with repulsive harmonic pot... Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the(3+1)-dimensional Gross–Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential. 展开更多
关键词 Gross-Pitaevskii equation exact solution solitory wave periodic wave F-expansion
原文传递
Bright Solitons on Continuous Wave Background in Blood Vessels
6
作者 项佳杰 蒋华杰 +1 位作者 戴朝卿 王悦悦 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第3期334-338,共5页
The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and w... The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and without continuous wave backgrounds. The dynamical behaviors of these soliton solutions are studied. The solitonic propagation behaviors such as restraint and sustainment on continuous wave background are discussed by altering the value of dispersion parameter δ. Moreover, the longitude controllable behaviors are also reported by modulating the dispersion parameter & These results are potential1y useful for future experiments in various blood vessels. 展开更多
关键词 nonlinear SchrSdinger equations variable coefficient bright solitons continuous wave background
原文传递
DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV. COMPRESSIBLE EULER EQUATIONS
7
作者 N. BEDJAOUI P.G.LEFLOCH 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第1期17-34,共18页
The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are ... The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper. 展开更多
关键词 Elasto dynamics Phase transitions Hyperbolic conservation law DIFFUSION DISPERSION Shock wave Undercompressive Entropy inequality Kinetic relation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部