The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with inc...The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with increasing the magnetic density linearly when the traveling magnetic field is applied during solidification, and the use of traveling magnetic field promotes the heterogeneous nucleation of pores. After the gas dissolved in the metal liquid accumulates to form large bubbles, the traveling magnetic field forces the bubbles to the surface of molten metal, so the gas is easy to separate from the melt in the liquid stage. The number of pores in the sample decreases with increasing the intensity of traveling magnetic field.展开更多
基金Project(2011CB610406)supported by the National Basic Research Program of ChinaProject(HIT.BRET1.2010008)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of traveling magnetic field on degassing of aluminum alloys were investigated, and the critical radius of the pores was calculated. The results show that the critical radius of the pores decreases with increasing the magnetic density linearly when the traveling magnetic field is applied during solidification, and the use of traveling magnetic field promotes the heterogeneous nucleation of pores. After the gas dissolved in the metal liquid accumulates to form large bubbles, the traveling magnetic field forces the bubbles to the surface of molten metal, so the gas is easy to separate from the melt in the liquid stage. The number of pores in the sample decreases with increasing the intensity of traveling magnetic field.