A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between th...A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.展开更多
In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a...In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.展开更多
文摘A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
文摘In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.