We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying...We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.展开更多
We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maxima...We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.展开更多
A novel intermediate fluid vaporization (IFV) technology for LNG re-gasification process with spiral-wound heat exchanging tubes is proposed. The new IFV project combines the advantage of running the shell and tube he...A novel intermediate fluid vaporization (IFV) technology for LNG re-gasification process with spiral-wound heat exchanging tubes is proposed. The new IFV project combines the advantage of running the shell and tube heat exchangers at high pressure with the advantage of compact space of heat exchangers. Thermal analysis on the two processes of forced convection and vaporization type heat transfer in the spiral wound tubes and vapor condensation /re-boiling type of heat transfer via intermediate fluid in shell side shows the feasibility of this promising technology.展开更多
In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam split...In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.展开更多
Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics si...Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics simulations which show that these intriguing phenomena can be attributed to the unstable attachments/detachments between individual carbon nanotubes induced by van der Waals interactions. We show that this behavior can be described by a triboelastic constitutive model. This study highlights the promise of carbon nanomaterials for energy absorption and dissipation under extreme conditions.展开更多
文摘A determinant theory is developed for Banach algebras and a characterization of those traced unital Banach algebras admitting a determinant is given.
基金Supported by the National Natural Science Foundation of China under Grant No.10974020the Fundamental Research Funds for the Central Universities
文摘We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.
文摘We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.
基金supported by grants from the Fundamental Research Funds for the Central Universities(DUT12JN01)the National Natural Science Foundation of China(51106017)
文摘A novel intermediate fluid vaporization (IFV) technology for LNG re-gasification process with spiral-wound heat exchanging tubes is proposed. The new IFV project combines the advantage of running the shell and tube heat exchangers at high pressure with the advantage of compact space of heat exchangers. Thermal analysis on the two processes of forced convection and vaporization type heat transfer in the spiral wound tubes and vapor condensation /re-boiling type of heat transfer via intermediate fluid in shell side shows the feasibility of this promising technology.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10774108 and 11074184
文摘In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.
文摘Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics simulations which show that these intriguing phenomena can be attributed to the unstable attachments/detachments between individual carbon nanotubes induced by van der Waals interactions. We show that this behavior can be described by a triboelastic constitutive model. This study highlights the promise of carbon nanomaterials for energy absorption and dissipation under extreme conditions.