The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing a...The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing algorithm, dividing the received bits into several sub-blocks and processing in parallel. This letter mainly discusses the applicability of turbo codes in high-speed real-time channel through the study of a parallel turbo decoding algorithm based on 3GPP-proposed turbo encoder and interleaver in various channel. Simulation re-sult shows that, by choosing an appropriate sub-block length, the time delay can be obviously shortened with-out degrading the performance and increasing hardware complexity, and furthermore indicates the applicability of Turbo codes in high-speed real-time channel.展开更多
The extraction of potassium from a tablet mixture of K-feldspar ore and CaSO4by roasting was studied with a focus on the effects of the decomposition behavior of CaSO4on the potassium extraction process.The roasted sl...The extraction of potassium from a tablet mixture of K-feldspar ore and CaSO4by roasting was studied with a focus on the effects of the decomposition behavior of CaSO4on the potassium extraction process.The roasted slags were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy,and thermogravimetric(TG)analysis.The XRD analysis revealed that hydrosoluble mischcrystal K2Ca2(SO4)3was obtained by ion exchange of Ca^2+ in CaSO4 and K^+ in KAlSi3O8.Meanwhile,the intermediate product,SiO2,separated from KAl Si3O8and reacted with CaSO4to decompose CaSO4.The SEM results showed that some blowholes emerged on the surface of the CaSO4particles when they reacted with SiO2at 1200℃,which indicates that SO2and O2gases were released from CaSO4.The TG curves displayed that pure CaSO4could not be decomposed below 1200℃,while the mixture of K-feldspar ore and CaSO4began to lose weight at 1000℃.The extraction rate of potassium and decomposition rate of CaSO4were 62%and 44%,respectively,at a mass ratio of CaSO4to K-feldspar ore of 3:1,temperature of 1200℃,tablet-forming pressure of6 MPa,and roasting time of 2 h.The decomposition of CaSO4reduced the potassium extraction rate;therefore,the required amount of CaSO4was more than the theoretical amount.However,excess CaSO4was also undesirable for the potassium extraction reaction because a massive amount of SO2and O2gas were derived from the decomposition of CaSO4,which provided poor contact between the reactants.The SO2released from CaSO4decomposition can be effectively recycled.展开更多
文摘The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing algorithm, dividing the received bits into several sub-blocks and processing in parallel. This letter mainly discusses the applicability of turbo codes in high-speed real-time channel through the study of a parallel turbo decoding algorithm based on 3GPP-proposed turbo encoder and interleaver in various channel. Simulation re-sult shows that, by choosing an appropriate sub-block length, the time delay can be obviously shortened with-out degrading the performance and increasing hardware complexity, and furthermore indicates the applicability of Turbo codes in high-speed real-time channel.
基金Supported by the National Key Research and Development Program(2016YFB0600904)Sichuan Province Science and Technology Project(2017GZ0377)Sichuan University Postdoctoral Research and Development Fund(2017SCU12017)
文摘The extraction of potassium from a tablet mixture of K-feldspar ore and CaSO4by roasting was studied with a focus on the effects of the decomposition behavior of CaSO4on the potassium extraction process.The roasted slags were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy,and thermogravimetric(TG)analysis.The XRD analysis revealed that hydrosoluble mischcrystal K2Ca2(SO4)3was obtained by ion exchange of Ca^2+ in CaSO4 and K^+ in KAlSi3O8.Meanwhile,the intermediate product,SiO2,separated from KAl Si3O8and reacted with CaSO4to decompose CaSO4.The SEM results showed that some blowholes emerged on the surface of the CaSO4particles when they reacted with SiO2at 1200℃,which indicates that SO2and O2gases were released from CaSO4.The TG curves displayed that pure CaSO4could not be decomposed below 1200℃,while the mixture of K-feldspar ore and CaSO4began to lose weight at 1000℃.The extraction rate of potassium and decomposition rate of CaSO4were 62%and 44%,respectively,at a mass ratio of CaSO4to K-feldspar ore of 3:1,temperature of 1200℃,tablet-forming pressure of6 MPa,and roasting time of 2 h.The decomposition of CaSO4reduced the potassium extraction rate;therefore,the required amount of CaSO4was more than the theoretical amount.However,excess CaSO4was also undesirable for the potassium extraction reaction because a massive amount of SO2and O2gas were derived from the decomposition of CaSO4,which provided poor contact between the reactants.The SO2released from CaSO4decomposition can be effectively recycled.