A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as a...A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.展开更多
In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different sc...In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of "pass by the main track, start and stop by the siding track". The other is the scheme of "two tracks play the same role". We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model.展开更多
Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal ve...Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.展开更多
Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positi...Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.展开更多
Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure mo...Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure moving block. We also analyze the characteristics of the urban rail traffic flow under the influence of train density, station dwell times, the length of train, and the train velocity. Train delays can be decreased effectively through flexible departure intervals according to the preceding train type before its departure. The results demonstrate that a suitable adjustment of the current train velocity based on the following train velocity can greatly shorten the minimum departure intervals and then increase the capacity of rail transit.展开更多
Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring ...Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring random tree (RRT) can directly take non-holonomic constraints into consideration, it is selected to solve this problem. By applying extra constraints on the movement, the generation of new configuration in RRT algorithm is simplified and accelerated. With section collision detection method applied, collision detection within the planer becomes more accurate and efficient. Then a new path planner is developed. This method complies with the non-holonomic constraints, avoids obstacles effectively and can be rapidly carried out while the vehicle is running. Simulation shows that this path planner can complete path planning in less than 0.5 s for a 170 mx 170 m area with moderate obstacle complexity.展开更多
文摘A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.
基金supported by National Natural Science Foundation of China under Grant Nos. 60634010 and 60776829Key Technology Research of Train Control System,and Urban Rail Transit Automation and Control Beijing Municipal Government Key Laboratory
文摘In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of "pass by the main track, start and stop by the siding track". The other is the scheme of "two tracks play the same role". We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60634010 and 60776829the State Key Laboratory of Rail Traffic Control and Safety (Contract No.RCS2008ZZ001 and RCS2010ZZ001),Beijing Jiaotong University
文摘Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.
基金supported by the National Key Technology R&D Program of China (No. 2008BAH37B05095)
文摘Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.
基金Supported by the National Basic Research Program of China under Grant No. 2012CB725400the National Natural Science Foundation of China under Grant No. 71131001-1the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2011ZZ003, Beijing Jiaotong University
文摘Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure moving block. We also analyze the characteristics of the urban rail traffic flow under the influence of train density, station dwell times, the length of train, and the train velocity. Train delays can be decreased effectively through flexible departure intervals according to the preceding train type before its departure. The results demonstrate that a suitable adjustment of the current train velocity based on the following train velocity can greatly shorten the minimum departure intervals and then increase the capacity of rail transit.
文摘Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring random tree (RRT) can directly take non-holonomic constraints into consideration, it is selected to solve this problem. By applying extra constraints on the movement, the generation of new configuration in RRT algorithm is simplified and accelerated. With section collision detection method applied, collision detection within the planer becomes more accurate and efficient. Then a new path planner is developed. This method complies with the non-holonomic constraints, avoids obstacles effectively and can be rapidly carried out while the vehicle is running. Simulation shows that this path planner can complete path planning in less than 0.5 s for a 170 mx 170 m area with moderate obstacle complexity.