Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in ...This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.展开更多
In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed a...In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed and evaluated based on automatic vehicle location (AVL) data. Based on the statistical analysis of the bus transit travel time, six indices including the coefficient of variance, the width of travel time distribution, the mean commercial speed, the congestion frequency, the planning time index and the buffer time index are proposed. Moreover, a framework for evaluating bus transit travel time reliability is constructed. Finally, a case study on a certain bus route in Suzhou is conducted. Results show that the proposed evaluation index system is simple and intuitive, and it can effectively reflect the efficiency and stability of bus operations. And a distinguishing feature of bus transit travel time reliability is the temporal pattern. It varies across different time periods.展开更多
A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as a...A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.展开更多
To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results ...To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.
基金The Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No. 2008-k5-14)
文摘In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed and evaluated based on automatic vehicle location (AVL) data. Based on the statistical analysis of the bus transit travel time, six indices including the coefficient of variance, the width of travel time distribution, the mean commercial speed, the congestion frequency, the planning time index and the buffer time index are proposed. Moreover, a framework for evaluating bus transit travel time reliability is constructed. Finally, a case study on a certain bus route in Suzhou is conducted. Results show that the proposed evaluation index system is simple and intuitive, and it can effectively reflect the efficiency and stability of bus operations. And a distinguishing feature of bus transit travel time reliability is the temporal pattern. It varies across different time periods.
文摘A unified model which is used to study the launching and travelling dynamic properties of a rlcket/launcher system is established. In this model, the rocket, the launcher,and the launching vehicle are considered as an interacting dynamic system in order to study the dynamic interaction between the various parts of the system and the optimal parameter matching among the above mentioned parts. The following random factors are taken into account in this paper. road surface excitation. rocket mass center misalignment, thrust misalignment, dynamic of the rocket, and the cross wind. Based on this unified model, a computer simulation software is developed, some simulation work has been carried out, and certain beneficial results have been achieved.
基金Project(50975289) supported by the National Natural Science Foundation of ChinaProject(2009J007-C) supported by the Technological Research and Development Program of the Ministry of Railways,ChinaProject(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate Students,China
文摘To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.