The autonomous navigation of an electric vehicle requires the implementation of a number of sensors and actuators intended to inform it about his environment or his position and velocity and deliver necessary inputs. ...The autonomous navigation of an electric vehicle requires the implementation of a number of sensors and actuators intended to inform it about his environment or his position and velocity and deliver necessary inputs. That's why it is important to detect and locate sensor and actuator faults as soon as possible to enable the operator to run the vehicle in degraded mode or use the fault tolerant control system if it exists. The main purpose of this paper deals with sensors or actuators faults diagnosis of autonomous vehicle. A diagnosis method using a nonlinear model of the vehicle is developed. Nonlinear state space model of the autonomous electric vehicle is used with the method of nonlinear analytical redundancy to detect and to isolate faults occurred on sensors or actuators. Computer simulations are carried out to verify the effectiveness of the method.展开更多
The development of GPS (global positioning system) receiver now can be integrated on a smartphone. GPS receiver on smartphones has been developed for location-based applications. Smartphones are very suitable to be ...The development of GPS (global positioning system) receiver now can be integrated on a smartphone. GPS receiver on smartphones has been developed for location-based applications. Smartphones are very suitable to be used as an experimental tool, because smartphones are usually equipped with various types of sensors. This paper proposes a model observation vehicle speed on a road section based on the GPS data on the smartphone. Observations made by calculating the speed of the speed of vehicles moving through the data transfer at the GPS location of the smartphone, the data are then sent periodically to the server and server processing and storage of vehicle speed data. After tested with test reliability indicators use RMSE, observations with model observations speed, speed based on GPS data on a smartphone are relevant when compared with the speed directly from the vehicle's speedometer with the difference between the value of the difference of speed that is 3.1785 km/h.展开更多
文摘The autonomous navigation of an electric vehicle requires the implementation of a number of sensors and actuators intended to inform it about his environment or his position and velocity and deliver necessary inputs. That's why it is important to detect and locate sensor and actuator faults as soon as possible to enable the operator to run the vehicle in degraded mode or use the fault tolerant control system if it exists. The main purpose of this paper deals with sensors or actuators faults diagnosis of autonomous vehicle. A diagnosis method using a nonlinear model of the vehicle is developed. Nonlinear state space model of the autonomous electric vehicle is used with the method of nonlinear analytical redundancy to detect and to isolate faults occurred on sensors or actuators. Computer simulations are carried out to verify the effectiveness of the method.
文摘The development of GPS (global positioning system) receiver now can be integrated on a smartphone. GPS receiver on smartphones has been developed for location-based applications. Smartphones are very suitable to be used as an experimental tool, because smartphones are usually equipped with various types of sensors. This paper proposes a model observation vehicle speed on a road section based on the GPS data on the smartphone. Observations made by calculating the speed of the speed of vehicles moving through the data transfer at the GPS location of the smartphone, the data are then sent periodically to the server and server processing and storage of vehicle speed data. After tested with test reliability indicators use RMSE, observations with model observations speed, speed based on GPS data on a smartphone are relevant when compared with the speed directly from the vehicle's speedometer with the difference between the value of the difference of speed that is 3.1785 km/h.