A double-dimensional big data assessment method on the characteristics of on-line taxi traffic operation is proposed to provide a scientific basis for carrying out the taxi industry reform and standardizing the on-lin...A double-dimensional big data assessment method on the characteristics of on-line taxi traffic operation is proposed to provide a scientific basis for carrying out the taxi industry reform and standardizing the on-line taxi hailing management work. Taking Shenzhen as an example, multi- source data such as on-line taxi license plate data, plate identification data and taxi (including on-line taxis) operation data are combined with the results of the stated preference (SP) survey on taxi operating characteristics to assess the overall operation characteristics of on-line taxis. The results show that the current on-line taxis in Shenzhen can be divided into three categories, that is, full-time on-line taxis, non- active on-line taxis and part-time on-line taxis, accounting for 4%, 55%, and 41%, respectively, of the total quantity. In terms of the characteristics of space-time operations, full-time on-line taxis have similar operating characteristics as those of traditional taxis; the operation of non-active on-line taxis and part-time on-line taxis coincides with commuting requirements during morning and evening peak hours. However, part-time on-line taxis operate for a much longer time period at night. Due to the convenient hailing and favorable price, on-line taxis have a significant impact on trip modes of citizens; and the substitution eflbct of on-line taxis on traditional buses and cruising taxis is obvious. It is beneficial for helping the government departments to objectively understand the development law of the on-line taxi industry and providing decision reference for the formulation of relevant management policies during the critical development stage of on-line taxi industry.展开更多
Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixt...Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.展开更多
基金The National Natural Science Foundation of China(No.71641005)
文摘A double-dimensional big data assessment method on the characteristics of on-line taxi traffic operation is proposed to provide a scientific basis for carrying out the taxi industry reform and standardizing the on-line taxi hailing management work. Taking Shenzhen as an example, multi- source data such as on-line taxi license plate data, plate identification data and taxi (including on-line taxis) operation data are combined with the results of the stated preference (SP) survey on taxi operating characteristics to assess the overall operation characteristics of on-line taxis. The results show that the current on-line taxis in Shenzhen can be divided into three categories, that is, full-time on-line taxis, non- active on-line taxis and part-time on-line taxis, accounting for 4%, 55%, and 41%, respectively, of the total quantity. In terms of the characteristics of space-time operations, full-time on-line taxis have similar operating characteristics as those of traditional taxis; the operation of non-active on-line taxis and part-time on-line taxis coincides with commuting requirements during morning and evening peak hours. However, part-time on-line taxis operate for a much longer time period at night. Due to the convenient hailing and favorable price, on-line taxis have a significant impact on trip modes of citizens; and the substitution eflbct of on-line taxis on traditional buses and cruising taxis is obvious. It is beneficial for helping the government departments to objectively understand the development law of the on-line taxi industry and providing decision reference for the formulation of relevant management policies during the critical development stage of on-line taxi industry.
基金Projects(51322810,50908050)supported by the National Natural Science Foundation of China
文摘Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.