期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多项式逼近的红外系统渐晕效应校正方法 被引量:1
1
作者 李召龙 沈同圣 娄树理 《红外与激光工程》 EI CSCD 北大核心 2016年第B05期6-10,共5页
渐晕效应是在红外成像时像平面中心区域较亮而边缘区域较暗的现象。渐晕效应对红外系统成像性能的影响非常严重,因此系统使用时有必要对渐晕效应进行校正。首先对渐晕效应的产生原因做了分析,然后提出了一种基于场景的渐晕校正方法。通... 渐晕效应是在红外成像时像平面中心区域较亮而边缘区域较暗的现象。渐晕效应对红外系统成像性能的影响非常严重,因此系统使用时有必要对渐晕效应进行校正。首先对渐晕效应的产生原因做了分析,然后提出了一种基于场景的渐晕校正方法。通过场景之间的方差信息提取背景,用多项式逼近背景灰度分布,得到校正因子,从而实现渐晕校正。为评价校正效果,提出具有统计意义的行间方差概念。分别利用星空和海面两种场景对校正方法进行验证。校正后行间方差减小到未校正行间方差的13.6%和3.8%,校正效果比较理想。 展开更多
关键词 渐晕效应 背景灰度分布 多项式逼近 校正因子 行间方差
下载PDF
Time-varying confidence interval forecasting of travel time for urban arterials using ARIMA-GARCH model 被引量:6
2
作者 崔青华 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期358-362,共5页
To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive co... To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model. 展开更多
关键词 confidence interval forecasting travel time autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity ARIMA-GARCH) conditional variance reliability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部