The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surf...The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surface temperature(T_(s))over the Tibetan Plateau(TP)as a key climatically sensitive region remains unclear.This study evaluates the capability of FGOALS-f3-L in reproducing the climatological T_(s)over the TP relative to the Climate Forecast System Reanalysis.The results show that FGOALS-f3-L can reasonably capture the spatial pattern of T_(s)but underestimates the annual mean T_(s)for the whole TP.The simulated T_(s)for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn.Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback(SAF)term strongly contributes to the annual,winter,and spring mean cold bias in the western TP and to the warm bias in the eastern TP.Compared with the SAF term,the surface sensible and latent heat flux terms make nearly opposite contributions to the T_(s)bias and considerably offset the bias due to the SAF term.The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP.The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn.Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the T_(s)bias over the TP.展开更多
Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a ...Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the展开更多
This research on the attenuation features of intensity in the Yunnan region has been conducted by using intensity isoseismals of 127 earthquakes, and the following three conclusions have been put forward: (1) The aver...This research on the attenuation features of intensity in the Yunnan region has been conducted by using intensity isoseismals of 127 earthquakes, and the following three conclusions have been put forward: (1) The average ratio value of long axis to short axis of innermost isoseismals in the Yunnan region is larger than that of eastern China and smaller than that of western China. The velocity of intensity attenuation varies in different directions; (2) The zoning feature of intensity attenuation in the Yunnan region is obvious; (3) In Northwest China and North China, the ratios of long axis to short axis of low magnitude isoseismals are larger than those of high magnitude ones. Compared with that phenomenon, the ratios in the Yunnan region are more complicated. Finally, some relevant questions are discussed.展开更多
基金supported by the National Key Research and Development Program of China[grant number 2018YFC1505706]the National Natural Science Foundation of China[grant numbers 91937302,91737306,41975109]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA17010105]。
文摘The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surface temperature(T_(s))over the Tibetan Plateau(TP)as a key climatically sensitive region remains unclear.This study evaluates the capability of FGOALS-f3-L in reproducing the climatological T_(s)over the TP relative to the Climate Forecast System Reanalysis.The results show that FGOALS-f3-L can reasonably capture the spatial pattern of T_(s)but underestimates the annual mean T_(s)for the whole TP.The simulated T_(s)for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn.Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback(SAF)term strongly contributes to the annual,winter,and spring mean cold bias in the western TP and to the warm bias in the eastern TP.Compared with the SAF term,the surface sensible and latent heat flux terms make nearly opposite contributions to the T_(s)bias and considerably offset the bias due to the SAF term.The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP.The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn.Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the T_(s)bias over the TP.
基金supported by the National Natural Science Foundation of China[grant number 41475039]the National Basic Research Program of China[grant number 2015CB953601]
文摘Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the
基金Sortoftheproject:fundedbytheNaturalScientificFoundationofYunnanProvince (2 0 0 0D0 0 2 8Q) China .
文摘This research on the attenuation features of intensity in the Yunnan region has been conducted by using intensity isoseismals of 127 earthquakes, and the following three conclusions have been put forward: (1) The average ratio value of long axis to short axis of innermost isoseismals in the Yunnan region is larger than that of eastern China and smaller than that of western China. The velocity of intensity attenuation varies in different directions; (2) The zoning feature of intensity attenuation in the Yunnan region is obvious; (3) In Northwest China and North China, the ratios of long axis to short axis of low magnitude isoseismals are larger than those of high magnitude ones. Compared with that phenomenon, the ratios in the Yunnan region are more complicated. Finally, some relevant questions are discussed.