We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting ...We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting (FBG) optical equaliser. Transmissions of 10-Gb/s non return-to-zero signals using a 1.2- GHz RSOA and FBG optical equaliser with different setups are demonstrated. Significant performance improvement and 40-kin standard single mode fibre transmission are achieved using FBG optical equaliser and Remotely Pum- ped Erbium-Doped Fibre Amplifier (RP-EDFA), where they are used to equalise the output of the band-limited RSOA and amplify the seed light and upstream signal, respectively.展开更多
基金ACKNOWLEDGEMENT This work was supported by the National High Technology Research and Development Pro- gram of China under Grant No. 2011AA01A- 104 the National Natural Science Foundation of China under Grant No. 61302079 and the Fund of State Key Laboratory of Information Photonics and Optical Communications, Bei- jing University of Posts and Telecommunica- tions, China.
文摘We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting (FBG) optical equaliser. Transmissions of 10-Gb/s non return-to-zero signals using a 1.2- GHz RSOA and FBG optical equaliser with different setups are demonstrated. Significant performance improvement and 40-kin standard single mode fibre transmission are achieved using FBG optical equaliser and Remotely Pum- ped Erbium-Doped Fibre Amplifier (RP-EDFA), where they are used to equalise the output of the band-limited RSOA and amplify the seed light and upstream signal, respectively.