A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range o...A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.展开更多
This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the co...This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.展开更多
Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it...Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.展开更多
In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influenc...In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.展开更多
文摘A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.
文摘This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.
文摘Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.
基金Project(2010ZX04001-162)supported by the National Science and Technology Major Project of China
文摘In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.