To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a co...To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.展开更多
A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some su...A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.展开更多
River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in f...River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.展开更多
文摘To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.
文摘A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.
基金National Natural Science Foundation of China,No.51479146,No.51579123,No.51509012Fundamental Research Funds for Central Welfare Research Institutes,No.TKS160103+2 种基金No.TKS150102The National Key Research&Development Programs,No.2013BAB12B01National Key Research Program of China,No.2016YFC0402106
文摘River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.