针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对...针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对全球定位系统(GPS)C/A码信号进行仿真验证。研究结果表明:延迟滤波器阶数越大,码多普勒的补偿效果越好;在采样率为5 MHz时,采用三阶Farrow结构的分数阶延迟滤波器捕获损耗降低至0.2 d B。展开更多
A method of shape encoding and retrieval is proposed in this letter, which uses centripetal code to encode shape and extracts shape's convex for retrieval. For the rotation invariance and translation invariance of...A method of shape encoding and retrieval is proposed in this letter, which uses centripetal code to encode shape and extracts shape's convex for retrieval. For the rotation invariance and translation invariance of the centripetal code and the normalization of convex,the proposed retrieval method is similarity transform resistant, Experimental results confirm this capability.展开更多
A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cam...A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cameras. A color compensation model is developed in RGB channels and then extended to YCbCr channels for practical use. A modified inter-view reference picture is constructed based on the color compensation model, which is more similar to the coding picture than the original inter-view reference picture. Moreover, the color compensation factors can be derived in both encoder and decoder, therefore no additional data need to be transmitted to the decoder. The experimental results show that the proposed method improves the coding efficiency of MVC and maintains good subjective quality.展开更多
In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every pola...In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.展开更多
The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This pap...The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.展开更多
Three dispersion compensation schemes of an optical label switching transmission system were investigated, which employs 40 Gbit/s return zero differential phase-shift keying(RZ-DPSK) payload labeled with 2.5 Gbit/s...Three dispersion compensation schemes of an optical label switching transmission system were investigated, which employs 40 Gbit/s return zero differential phase-shift keying(RZ-DPSK) payload labeled with 2.5 Gbit/s on-off keying(OOK) signal based on the optical carrier suppression and separation(OCSS) techniq ue, In the system, proposed are the receiver sensi ti vity oS payload and label, achieving -- 32. 4 dBm and --38.5 dBm, respectively. Using the optimal dispersion compensation scheme, after transmitted over 160 km and 320 km SMF respectively, the label can be recovered without power penalty, while the payload can be recovered with less than 2 dB and 5 dB penalty, respectively.展开更多
文摘针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对全球定位系统(GPS)C/A码信号进行仿真验证。研究结果表明:延迟滤波器阶数越大,码多普勒的补偿效果越好;在采样率为5 MHz时,采用三阶Farrow结构的分数阶延迟滤波器捕获损耗降低至0.2 d B。
基金National Natural Science Foundation of China(No. 60172045)863-306 Project (863-306-ZT03-09)
文摘A method of shape encoding and retrieval is proposed in this letter, which uses centripetal code to encode shape and extracts shape's convex for retrieval. For the rotation invariance and translation invariance of the centripetal code and the normalization of convex,the proposed retrieval method is similarity transform resistant, Experimental results confirm this capability.
基金Project supported by the National Natural Science Foundation of China (No. 60772134)the Innovation Foundation of Xidian University,China (No. Chuang 05018)
文摘A novel color compensation method for multi-view video coding (MVC) is proposed, which efficiently exploits the inter-view dependencies between views with the existence of color mismatch caused by the diversity of cameras. A color compensation model is developed in RGB channels and then extended to YCbCr channels for practical use. A modified inter-view reference picture is constructed based on the color compensation model, which is more similar to the coding picture than the original inter-view reference picture. Moreover, the color compensation factors can be derived in both encoder and decoder, therefore no additional data need to be transmitted to the decoder. The experimental results show that the proposed method improves the coding efficiency of MVC and maintains good subjective quality.
基金supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China under Grant No.12511119
文摘In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.
文摘The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.
基金National Natural Science Foundation of China(60677004)National High Technology"863"Research and Development Program of China(2007AA01Z260)+4 种基金Key Project of Chinese Ministry of Education(107011)Key Laboratory of Broadband Optical Fiber Transmission and Communication Networks(Ministry of Education)Teaching and Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry)the Corporative Building Project of Beijing Educational Committee(XK100130737)Program for New Century Excellent Talents in University of China( NECT-07-0111)
文摘Three dispersion compensation schemes of an optical label switching transmission system were investigated, which employs 40 Gbit/s return zero differential phase-shift keying(RZ-DPSK) payload labeled with 2.5 Gbit/s on-off keying(OOK) signal based on the optical carrier suppression and separation(OCSS) techniq ue, In the system, proposed are the receiver sensi ti vity oS payload and label, achieving -- 32. 4 dBm and --38.5 dBm, respectively. Using the optimal dispersion compensation scheme, after transmitted over 160 km and 320 km SMF respectively, the label can be recovered without power penalty, while the payload can be recovered with less than 2 dB and 5 dB penalty, respectively.