期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
补偿神经网络算法在INS参数估计的应用 被引量:2
1
作者 苏玉涛 王惠南 任海林 《中国惯性技术学报》 EI CSCD 2004年第1期15-18,共4页
对基于λ-γ学习算法的补偿神经网络结构进行了研究,将其应用在导航参数误差估计中。与传统的前馈神经网络相比,它不仅能减少神经元的个数,还能减少训练所需的计算时间。通过计算机仿真,与传统的前馈算法进行了比较,表明了该模型的有效... 对基于λ-γ学习算法的补偿神经网络结构进行了研究,将其应用在导航参数误差估计中。与传统的前馈神经网络相比,它不仅能减少神经元的个数,还能减少训练所需的计算时间。通过计算机仿真,与传统的前馈算法进行了比较,表明了该模型的有效性和实用性。 展开更多
关键词 补偿神经网络算法 卡尔曼滤波 λ-γ学习算法 人工神经网络 轨道确定 导航参数误差 前馈神经网络 惯性导航系统
下载PDF
Neural network based method for compensating model error 被引量:2
2
作者 胡伍生 孙璐 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期400-403,共4页
Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (call... Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (called the H-BP algorithm) for compensating function model errors is put forward. The function model is assumed as y =f(x1, x2,… ,xn), and the special structure of the H-BP algorithm is determined as ( n + 1) ×p × 1, where (n + 1) is the element number of the input layer, and the elements are xl, x2,…, xn and y' ( y' is the value calculated by the function model); p is the element number of the hidden layer, and it is usually determined after many tests; 1 is the dement number of the output layer, and the element is △y = y0-y'(y0 is the known value of the sample). The calculation steps of the H-BP algorithm are introduced in detail. And then, the results of three methods for compensating function model errors from one engineering project are compared with each other. After being compensated, the accuracy of the traditional methods is about ± 19 mm, and the accuracy of the H-BP algorithm is ± 4. 3 mm. It shows that the proposed method based on a neural network is more effective than traditional methods for compensating function model errors. 展开更多
关键词 model error neural network BP algorithm compen- sating
下载PDF
引入置信度方法的变参数路面附着系数非线性观测器
3
作者 罗文发 吴光强 郑松林 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期75-81,共7页
为了提高观测器估计精度并针对大多数采用固定观测器增益的现状,根据Lyapunov稳定性条件采用变参数方法,实现观测器增益的自适应调整。目前大多数观测器估计值为利用附着系数并不是峰值附着系数,因此引入置信度的方法,即通过带补偿度的... 为了提高观测器估计精度并针对大多数采用固定观测器增益的现状,根据Lyapunov稳定性条件采用变参数方法,实现观测器增益的自适应调整。目前大多数观测器估计值为利用附着系数并不是峰值附着系数,因此引入置信度的方法,即通过带补偿度的神经网络模糊算法计算置信度从而估算峰值附着系数。采用Simulink与Carsim动力学仿真软件进行联合仿真验证,结果表明设计的非线性观测器是有效的,估计精度满足工程要求。 展开更多
关键词 非线性观测器 变参数 置信度 补偿神经网络模糊算法 路面附着系数
下载PDF
Neural Network Pruning Algorithm with Penalty OBS Process
4
作者 MENGJiang WANGYao-cai LIUTao 《Journal of China University of Mining and Technology》 EI 2005年第1期52-55,共4页
Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not... Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method. 展开更多
关键词 GENERALIZATION neural network pruning algorithm penalty method optimal brain surgeon CLC number:TP 183
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部