期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于补充总体局部均值分解的轴承故障诊断方法 被引量:2
1
作者 任子晖 渠虎 +1 位作者 王翠 陈明 《郑州大学学报(工学版)》 CAS 北大核心 2018年第3期62-66,共5页
为了弥补局部均值分解(LMD)在处理非平稳、非高斯信号的不足,提出一种基于补充总体局部均值分解(CELMD)和频谱分析相结合的轴承故障诊断方法.该方法向原信号成对地添加符号相反的白噪声,首先对含噪信号进行LMD分解,得到一系列的乘积函数... 为了弥补局部均值分解(LMD)在处理非平稳、非高斯信号的不足,提出一种基于补充总体局部均值分解(CELMD)和频谱分析相结合的轴承故障诊断方法.该方法向原信号成对地添加符号相反的白噪声,首先对含噪信号进行LMD分解,得到一系列的乘积函数(PF),再选取包含最丰富故障信息的PF分量,最后对该PF分量进行FFT变换,提取故障特征频率,实现对轴承状态和故障类型地识别.通过对仿真信号和轴承振动信号地分析,表明该方法不仅能消除残留白噪声和抑制模态混叠还可以提高故障诊断的准确性和有效性. 展开更多
关键词 补充总体局部均值分解 特征频率 FFT变换 振动信号 滚动轴承
下载PDF
基于噪声辅助分析的总体局部均值分解方法 被引量:35
2
作者 程军圣 张亢 杨宇 《机械工程学报》 EI CAS CSCD 北大核心 2011年第3期55-62,共8页
局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分... 局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分解(Ensemble local mean decomposition,ELMD)方法。在该方法中添加不同的白噪声到目标信号,分别对加噪后的信号进行LMD分解,最后将多次分解结果的平均值作为最终的分解结果。对仿真信号和试验转子局部碰摩信号进行分析,结果表明ELMD方法能有效地克服原LMD方法的模态混淆现象。 展开更多
关键词 局部均值分解 模态混淆 白噪声 滤波器组 总体局部均值分解
下载PDF
基于总体局部均值分解方法的心律失常特征提取与分类
3
作者 陈敏 王娆芬 《中国医学物理学杂志》 CSCD 2019年第10期1211-1216,共6页
针对心电信号自动分类技术中的特征提取,提出一种新的特征提取方法—总体局部均值分解(ELMD)方法。该方法首先对心电信号加入不同的高斯白噪声,然后进行局部均值分解得到若干乘积函数(PF)分量,求取多次分解后的PF分量均值。多次加入噪... 针对心电信号自动分类技术中的特征提取,提出一种新的特征提取方法—总体局部均值分解(ELMD)方法。该方法首先对心电信号加入不同的高斯白噪声,然后进行局部均值分解得到若干乘积函数(PF)分量,求取多次分解后的PF分量均值。多次加入噪声及分量平均的过程可以克服基本局部均值分解方法存在的模态混叠问题。选取较优的前4个PF分量进行特征计算,将得到的特征向量矩阵送入支持向量机对正常心电信号和4种常见的心律失常信号进行分类。从MIT-BIH心律失常数据库的分类结果来看,ELMD总体分类准确率达到99.61%,高于一般方法,证明了ELMD方法的有效性。 展开更多
关键词 心电信号 总体局部均值分解 特征提取 心律失常分类 支持向量机
下载PDF
总体局部均值分解法在坦克变速箱滚动轴承故障诊断中的应用 被引量:4
4
作者 李慧梅 安钢 黄梦 《装甲兵工程学院学报》 2013年第2期37-42,共6页
分析了局部均值分解的模态混叠问题,仿真验证了总体局部均值分解对模式混叠的抑制能力,并指出总体局部均值分解方法存在的不足,提出了在该方法中加入高斯白噪声的准则和进行后处理的改进方法。提出了基于改进的总体局部均值分解的滚动... 分析了局部均值分解的模态混叠问题,仿真验证了总体局部均值分解对模式混叠的抑制能力,并指出总体局部均值分解方法存在的不足,提出了在该方法中加入高斯白噪声的准则和进行后处理的改进方法。提出了基于改进的总体局部均值分解的滚动轴承故障诊断方法,并将该方法应用于某坦克变速箱滚动轴承滚动体点蚀故障诊断中,结果表明:该方法能成功地提取出轴承滚动体的故障特征频率。 展开更多
关键词 总体局部均值分解 滚动轴承 故障诊断 模态混叠
原文传递
噪声参数最优ELMD与LS-SVM在轴承故障诊断中的应用与研究 被引量:22
5
作者 王建国 陈帅 张超 《振动与冲击》 EI CSCD 北大核心 2017年第5期72-78,86,共8页
针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承... 针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。 展开更多
关键词 最优噪声参数 总体局部均值分解 能量特征向量 最小二乘支持向量机 故障诊断
下载PDF
ELMD和MCKD在滚动轴承早期故障诊断中的应用 被引量:7
6
作者 王朝阁 庞震 +2 位作者 任学平 孙百祎 王建国 《机械科学与技术》 CSCD 北大核心 2017年第11期1764-1770,共7页
针对滚动轴承早期故障特征信号微弱且受环境噪声影响严重,故障特征信息难以识别的问题,提出了基于总体局部均值分解(Ensemble local mean decomposition,ELMD)和最大相关峭度反褶积(Maximum correlated kurtosis deconvolution,MCKD)的... 针对滚动轴承早期故障特征信号微弱且受环境噪声影响严重,故障特征信息难以识别的问题,提出了基于总体局部均值分解(Ensemble local mean decomposition,ELMD)和最大相关峭度反褶积(Maximum correlated kurtosis deconvolution,MCKD)的早期故障诊断方法。该方法首先运用ELMD对采集到的振动信号进行分解,得到有限个乘积函数(Product function,PF),由于噪声的干扰,从PF分量的频谱中很难对故障做出正确的判断。然后对包含故障特征的PF分量进行最大相关峭度反褶积处理以消除噪声影响,凸现故障特征信息。最后对降噪信号进行Hilbert包络谱分析,即可从中准确地识别出轴承的故障特征频率。通过轴承故障模拟实验和工程应用实例验证了该方法的有效性与优越性。 展开更多
关键词 滚动轴承 总体局部均值分解 最大相关峭度反褶积 Hilbert包络谱 早期故障
下载PDF
电能质量扰动识别的不同时频分析方法研究 被引量:5
7
作者 张立国 张淑清 +4 位作者 李莎莎 乔永静 张航飞 李明星 贺朋 《计量学报》 CSCD 北大核心 2017年第3期345-350,共6页
分析了EEMD、LMD、ITD的算法、特点及分解不同扰动信号的实现步骤。经过实验模拟,对比分解所得效果图,得到适合各种电能质量扰动信号的最佳分解方法:对于电压暂升、电压暂降、电压中断幅值类扰动信号用EEMD方法分解效果最佳;脉冲暂态扰... 分析了EEMD、LMD、ITD的算法、特点及分解不同扰动信号的实现步骤。经过实验模拟,对比分解所得效果图,得到适合各种电能质量扰动信号的最佳分解方法:对于电压暂升、电压暂降、电压中断幅值类扰动信号用EEMD方法分解效果最佳;脉冲暂态扰动EEMD和ITD均可,ITD方法更快、定位更准;暂态振荡信号用ITD方法效果较好;电压闪变扰动EEMD分解效果较好;谐波信号用ITD分解效果较好。 展开更多
关键词 计量学 电能质量扰动信号 总体平均经验模式分解 局部均值分解 固有时间尺度分解
下载PDF
最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究 被引量:20
8
作者 杨斌 张家玮 +1 位作者 樊改荣 王建国 《振动与冲击》 EI CSCD 北大核心 2019年第11期59-67,共9页
机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean... 机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean Decomposition, ELMD)相结合的轴承复合故障诊断方法;首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。 展开更多
关键词 最优参数最大相关峭度解卷积 总体局部均值分解 复合故障 故障诊断
下载PDF
一种ELMD模糊熵和GK聚类的轴承故障诊断方法 被引量:5
9
作者 杨帅杰 马跃 +1 位作者 张旭 李铎 《机械设计与制造》 北大核心 2018年第6期118-121,共4页
针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得... 针对滚动轴承故障振动信号的非平稳、非线性特性,采用一种基于总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)模糊熵和GK(Gustafson-Kessell)聚类的滚动轴承故障诊断方法。首先通过对滚动轴承故障振动信号进行ELMD分解,得到若干的乘积函数(Product Function,PF)分量和一个残差。然后,通过PF分量和原始轴承故障信号的相关性分析,选取与原始信号相关性最大的PF分量,并求取PF分量的模糊熵值作为特征向量。最终,通过GK聚类对所得的特征向量进行识别分类。通过对滚动轴承正常状态、内圈故障、滚动体故障和外圈故障的轴承四种状态分析表明,基于ELMD模糊熵和GK聚类的方法能够准确有效的对轴承故障状态进行分类识别。 展开更多
关键词 滚动轴承 总体局部均值分解 模糊熵 GK聚类 故障诊断
下载PDF
基于自相关降噪和ELMD的轴承故障诊断方法 被引量:3
10
作者 王建国 陈帅 +1 位作者 张超 王朝阁 《仪表技术与传感器》 CSCD 北大核心 2017年第6期153-157,共5页
为了提取在故障轴承振动信号中被强噪声淹没的微弱冲击特征信号,提出一种基于总体局部均值分解和自相关降噪的轴承故障诊断方法。首先,应用自相关函数对轴承故障信号进行降噪;其次,对降噪后的信号进行ELMD分解,并得到一系列的乘积分量;... 为了提取在故障轴承振动信号中被强噪声淹没的微弱冲击特征信号,提出一种基于总体局部均值分解和自相关降噪的轴承故障诊断方法。首先,应用自相关函数对轴承故障信号进行降噪;其次,对降噪后的信号进行ELMD分解,并得到一系列的乘积分量;最后,利用共振解调技术对各个PF分量进行包络分析,进而发现轴承故障频率。试验结果表明:将自相关降噪和ELMD分解方法结合用于实测轴承故障特征提取中,不仅可以降低信噪比,而且可以有效地提取轴承故障的特征频率。 展开更多
关键词 总体局部均值分解 自相关降噪 乘积分量 故障诊断
下载PDF
大坝变形多尺度分析ELMD-LSSVM预测模型 被引量:3
11
作者 王奉伟 周昀琦 +1 位作者 周世健 罗亦泳 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第12期1475-1479,共5页
针对局部均值分解LMD实现过程中存在的模式混淆现象,利用局部均值分解的原理,提出一种结合总体局部均值分解(ELMD)与最小二乘支持向量机(LSSVM)方法的多尺度大坝变形预测模型.利用ELMD方法对大坝变形序列进行分解,得到其PF分量,利用最... 针对局部均值分解LMD实现过程中存在的模式混淆现象,利用局部均值分解的原理,提出一种结合总体局部均值分解(ELMD)与最小二乘支持向量机(LSSVM)方法的多尺度大坝变形预测模型.利用ELMD方法对大坝变形序列进行分解,得到其PF分量,利用最小二乘支持向量机进行外推预测,再把各PF分量的预测结果进行叠加重构,得到大坝变形预测值.通过实例验证分析,比较多元回归分析、LSSVM和ELMD-LSSVM三种模型在大坝变形监测数据处理中的拟合和预测结果.研究结果表明:ELMD-LSSVM方法能够减弱模态混叠现象的影响,充分发掘数据本身所蕴含的物理机制和物理规律,为大坝变形多尺度预测分析奠定较好的基础. 展开更多
关键词 总体局部均值分解ELMD 最小二乘支持向量机LSSVM 多尺度 变形分析
下载PDF
基于ELMD和MED的滚动轴承早期故障诊断方法 被引量:4
12
作者 杨娜 沈亚坤 《轴承》 北大核心 2018年第8期55-59,共5页
针对滚动轴承早期故障振动信号的非平稳特性和现实中受环境噪声影响严重,故障特征信息难以识别的问题,提出基于ELMD和MED的故障诊断方法。首先,运用ELMD对采集到的轴承振动信号进行分解,得到一系列PF分量;然后,依据相关系数与峭度准则,... 针对滚动轴承早期故障振动信号的非平稳特性和现实中受环境噪声影响严重,故障特征信息难以识别的问题,提出基于ELMD和MED的故障诊断方法。首先,运用ELMD对采集到的轴承振动信号进行分解,得到一系列PF分量;然后,依据相关系数与峭度准则,选取包含故障特征信息较丰富的PF分量进行MED滤波处理以消除噪声影响,凸现故障特征信息;最后,对降噪信号进行Hilbert包络谱分析,从谱图中准确地识别轴承故障特征频率。 展开更多
关键词 滚动轴承 故障诊断 总体局部均值分解 最熵小反褶积
下载PDF
基于ELMD和能量算子解调的滚动轴承故障诊断方法研究 被引量:1
13
作者 李慧梅 安钢 郑立生 《机床与液压》 北大核心 2014年第23期200-203,191,共5页
针对滚动轴承发生故障时信号的调制特点,提出了基于总体局部均值分解(ELMD)和Teager能量算子解调的故障诊断方法。运用ELMD方法对振动信号进行分解,得到有限个单分量的调幅调频信号;运用能量算子解调方法对包含有故障特征信息的分量进... 针对滚动轴承发生故障时信号的调制特点,提出了基于总体局部均值分解(ELMD)和Teager能量算子解调的故障诊断方法。运用ELMD方法对振动信号进行分解,得到有限个单分量的调幅调频信号;运用能量算子解调方法对包含有故障特征信息的分量进行解调,提取故障特征频率。将该方法应用于实际滚动轴承滚动体点蚀故障诊断中,成功地提取出了故障特征频率。 展开更多
关键词 总体局部均值分解 能量算子 解调 滚动轴承
下载PDF
基于ELMD和1.5维谱的滚动轴承早期故障诊断方法
14
作者 任学平 黄慧杰 李攀 《机械设计与制造》 北大核心 2019年第11期177-180,共4页
滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用E... 滚动轴承出现早期故障时,故障特征十分微弱,伴随严重的噪声干扰导致其故障特征难以识别,针对这一问题,提出了一种总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)和1.5维谱相结合的滚动轴承故障诊断新方法。该方法首先运用ELMD对振动信号进行分解,得到一系列乘积函数(product function,PF)分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的PF分量,最后对提取的PF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。通过仿真信号和工程实验数据分析验证了该方法的有效性。 展开更多
关键词 滚动轴承 早期故障 总体局部均值分解 1.5维谱
下载PDF
基于自适应噪声参数优化ELMD的行星齿轮箱故障诊断研究 被引量:9
15
作者 王朝阁 李宏坤 +1 位作者 杨蕊 任学平 《振动与冲击》 EI CSCD 北大核心 2020年第18期60-69,共10页
针对总体局部平均分解(ELMD)中添加白噪声的振幅和集成次数两个关键参数设置依赖使用者经验,以及添加噪声后在信号重构过程中存在残余噪声污染和运算量大的问题,提出一种自适应噪声参数优化的总体局部均值分解(APOELMD)方法。该方法在... 针对总体局部平均分解(ELMD)中添加白噪声的振幅和集成次数两个关键参数设置依赖使用者经验,以及添加噪声后在信号重构过程中存在残余噪声污染和运算量大的问题,提出一种自适应噪声参数优化的总体局部均值分解(APOELMD)方法。该方法在局部均值分解(LMD)过程中添加成对高频正负白噪声,噪声的幅值和集成次数分别固定为0.01 SD(SD为原始信号的标准差)和2;不断地改变白噪声的上限频率,利用相对均方根误差这一指标来自适应地选取白噪声的最佳上限频率;白噪声的最佳上限频率确定之后,APOELMD方法即可实现最理想的分解效果。仿真实验结果表明,该方法显著提升了ELMD的性能,提高了诊断效率;将该方法应用于行星轮箱故障诊断中,能够精确提取故障特征信息,实现了对行星齿轮箱局部损伤故障的准确判别。 展开更多
关键词 总体局部均值分解(ELMD) 噪声最佳上限频率 参数优化 行星齿轮箱 特征提取
下载PDF
基于LCEEMD的低信噪比拉曼光谱自适应去噪方法研究 被引量:3
16
作者 赵肖宇 贺燕 +3 位作者 翟哲 佟亮 蔡立晶 尚廷义 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第10期3124-3128,共5页
在生物体拉曼光谱快速采集或低功率采集过程中,往往会获得低信噪比拉曼光谱。针对低信噪比光谱数据,提出应用补充总体经验模态方法(CEEMD)分解拉曼光谱,并且依据特征模态分量的归一化排列熵值(NPE)按比例扣除噪声成分的方法,称为局部补... 在生物体拉曼光谱快速采集或低功率采集过程中,往往会获得低信噪比拉曼光谱。针对低信噪比光谱数据,提出应用补充总体经验模态方法(CEEMD)分解拉曼光谱,并且依据特征模态分量的归一化排列熵值(NPE)按比例扣除噪声成分的方法,称为局部补充总体均值经验模分解方法(LCEEMD)。LCEEMD方法不仅解决了经验模态(EMD)分解中高频信号与噪声的模态混叠问题,还有效降低了总体经验模态分解法(EEMD)中的残留噪声。仿真数据实验显示,LCEEMD方法在处理10db信噪比模拟光谱时获得了39.615 0db信噪比,0.001 17标准差和0.999 9相关系数。在人体皮肤拉曼光谱试验中,LCEEMD方法滤波后数据准确呈现出角质层脂质酰胺I带激发拉曼强谱峰以及甘油三酸酯中(C—O)酯微弱谱峰。在水稻叶片可溶性糖定量预测模型中,LCEEMD方法取得了0.871 7预测相关系数和0.912 0预测标准误差,优于EMD和EEMD软阈值去噪(0.511 4,1.647 8和0.638 2,1.508 8)。LCEEMD方法实施过程中,根据去噪性能指标反馈调整归一化排列熵阈值,直至获得最佳去噪效果,滤波过程无需参数设置,可以自适应实现。 展开更多
关键词 局部补充总体均值经验模分解 归一化排列熵 自适应去噪 拉曼光谱
下载PDF
自适应随机共振与ELMD在轴承故障诊断中的应用 被引量:7
17
作者 何园园 张超 陈帅 《机械科学与技术》 CSCD 北大核心 2018年第4期607-613,共7页
针对随机共振(Stochastic resonance,SR)在处理轴承故障信号时需要满足小参数(信号频率、幅值、噪声强度远小于1)这一条件以及轴承故障特征难以提取的问题,提出基于自适应变尺度随机共振与总体局部均值分解(Ensemble local mean decompo... 针对随机共振(Stochastic resonance,SR)在处理轴承故障信号时需要满足小参数(信号频率、幅值、噪声强度远小于1)这一条件以及轴承故障特征难以提取的问题,提出基于自适应变尺度随机共振与总体局部均值分解(Ensemble local mean decomposition,ELMD)的轴承故障诊断方法。首先,对实测的信号按照一定的频率进行压缩,使其满足随机共振小参数的要求,然后,通过遗传算法(Genetic algorithm,GA)对变尺度随机共振双稳系统中的结构参数a,b进行优化,最后将随机共振输出信号进行ELMD分解,通过各PF分量的频谱图寻找轴承故障特征频率。对实测轴承故障信号的实验分析,结果表明本文提出的方法可有效地应用于轴承的故障诊断中。 展开更多
关键词 随机共振 遗传算法 总体局部均值分解 故障诊断
下载PDF
ELMD与排列熵在滚动轴承故障诊断中的应用 被引量:3
18
作者 李伟娟 陈帅 张超 《组合机床与自动化加工技术》 北大核心 2016年第12期88-91,共4页
针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信... 针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信号进行ELMD分解并得到一系列窄带乘积函数(product function,PF),然后,计算各PF分量排列熵以构造高维特征向量,最后将高维特征向量作为多故障分类器的输入来识别轴承故障类型。实验结果表明ELMD方法可以有效地抑制模态混叠;PF分量的排列熵分布可以反应轴承不同工作状态下的信号特征;基于ELMD与排列熵的智能诊断方法可以准确地识别轴承的工作状态和故障类型。 展开更多
关键词 排列熵 总体局部均值分解 高维特征向量 模态混叠 故障诊断
下载PDF
计及网压波动的牵引传动系统间谐波传播机理研究 被引量:3
19
作者 张桂南 张波 +2 位作者 黄金 陆阳 李杰波 《电力自动化设备》 EI CSCD 北大核心 2021年第2期186-192,共7页
随着多台电力机车同时投入运行后牵引供电系统出现电压波动现象,其在牵引传动系统中的传播特性是当前的研究热点。首先推导了间谐波在牵引传动系统中的传播机理,并分析了定子间谐波电流频谱与负载转矩间的对应关系;其次研究了间谐波传... 随着多台电力机车同时投入运行后牵引供电系统出现电压波动现象,其在牵引传动系统中的传播特性是当前的研究热点。首先推导了间谐波在牵引传动系统中的传播机理,并分析了定子间谐波电流频谱与负载转矩间的对应关系;其次研究了间谐波传播下牵引电机电流间谐波辨识方法;随后基于瞬态电流控制策略、磁场定向的矢量控制策略搭建电力机车牵引传动系统的仿真模型,利用扰动激励法模拟了间谐波在牵引传动系统的传播特性;最后结合总体局部均值分解对定子电流的动态频域特性进行分析,确定了整流器输入电压与电机定子电流的间谐波幅频的对应关系。 展开更多
关键词 牵引传动系统 间谐波 矢量控制 扰动激励法 总体局部均值分解
下载PDF
噪声参数最优ELMD与谱峭度在滚动轴承故障诊断中的应用 被引量:4
20
作者 王建国 陈帅 张超 《机械传动》 CSCD 北大核心 2017年第5期170-175,共6页
为了精准、稳定地提取滚动轴承故障特征,提出一种噪声参数最优总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与谱峭度(Spectral Kurtosis,SK)相结合的轴承故障诊断新方法。首先引入相对均方根误差确定ELMD方法中的最优噪... 为了精准、稳定地提取滚动轴承故障特征,提出一种噪声参数最优总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与谱峭度(Spectral Kurtosis,SK)相结合的轴承故障诊断新方法。首先引入相对均方根误差确定ELMD方法中的最优噪声幅值;然后对故障信号进行噪声参数最优ELMD分解,并选取具有最大相关性的窄带乘积函数(Product Function,PF)作为重构信号;最后利用谱峭度方法和包络解调方法对重构信号进行处理。实验结果表明,噪声参数最优ELMD方法可以有效地抑制ELMD分解中的模态混叠,与谱峭度结合可以准确地提取滚动轴承故障特征。 展开更多
关键词 噪声参数最优 总体局部均值分解 谱峭度 相对均方根误差 模态混叠
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部