期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多目标粒子群算法用于补料分批生化反应器动态多目标优化 被引量:17
1
作者 贺益君 俞欢军 +1 位作者 成飙 陈德钊 《化工学报》 EI CAS CSCD 北大核心 2007年第5期1262-1270,共9页
多目标优化是过程系统工程的重要课题,通常以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。基于群智能的粒子群算法具有全局优化性能,且易于实现。为使其适于多目标优化,应拓展功能... 多目标优化是过程系统工程的重要课题,通常以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。基于群智能的粒子群算法具有全局优化性能,且易于实现。为使其适于多目标优化,应拓展功能,实施改造。以Pareto支配概念评价种群个体的优劣,设计了确定局部最优点和全局最优点的操作。又利用各粒子的局部最优点信息进行速度更新,以加强种群的多样性,避免因早熟而陷于局部最优。还设置了外部优解库,并通过分散度计算,以适当的策略进行更新,使之逐步均匀地逼近于Pareto最优解集。由此构建一种多目标粒子群优化算法(multi-objective particle swarm optimization,MOP-SO),并用于补料分批生化反应器的动态多目标优化,取得了满意的结果。可基于所搜得的Pareto最优解集,分析目标间的关系,为合理决策提供有效的支持。经与NSGA-II比较,MOPSO算法具有更为优良的性能。 展开更多
关键词 多目标 粒子群算法 均匀逼近 PARETO最优集 补料分批生化反应器 动态优化
下载PDF
一种改进的差分进化算法及其在补料分批式生化反应器动态优化中的应用 被引量:2
2
作者 孙帆 杜文莉 钱锋 《化工学报》 EI CAS CSCD 北大核心 2012年第11期3609-3617,共9页
动态优化是生物化工过程中的重要课题,求解动态优化问题通常有两种方法:解析法和数值法。基于智能进化算法的数值方法在动态优化中的应用越来越广泛,但是这些方法局部寻优能力不强,容易陷入局部最优,并且求解速度相对较慢。针对这些方... 动态优化是生物化工过程中的重要课题,求解动态优化问题通常有两种方法:解析法和数值法。基于智能进化算法的数值方法在动态优化中的应用越来越广泛,但是这些方法局部寻优能力不强,容易陷入局部最优,并且求解速度相对较慢。针对这些方法的不足,提出了一种改进的差分进化算法,设计了新的局部寻优算子来增强算法的局部寻优能力,并且采用一种新的控制策略表示方法来求解动态优化问题。通过求解补料分批式生化反应器的动态优化实例,证明了算法的有效性和鲁棒性。通过与其他几种方法进行对比,实验结果表明,所提出的方法在优化结果和计算代价方面都有优势。 展开更多
关键词 差分进化算法 动态优化 补料分批生化反应器
下载PDF
一种基于梯度信息的多目标优化算法 被引量:2
3
作者 祁荣宾 刘趁霞 +1 位作者 钟伟民 钱锋 《化工学报》 EI CAS CSCD 北大核心 2013年第12期4401-4409,共9页
传统的多目标进化算法多是基于Pareto最优概念的类随机搜索算法,求解速度较慢,特别是针对动态多目标优化问题。就此提出了一种新的基于梯度信息的多目标寻优算法(hybrid optimization algorithm based on single and multi-objective gr... 传统的多目标进化算法多是基于Pareto最优概念的类随机搜索算法,求解速度较慢,特别是针对动态多目标优化问题。就此提出了一种新的基于梯度信息的多目标寻优算法(hybrid optimization algorithm based on single and multi-objective gradient information,HSMGOA),该算法首先利用种群中每个个体对各目标的负梯度方向,以有效保证种群个体能沿单个目标函数值减小的方向加快搜索;同时为避免由于多目标问题之间的冲突性而导致其他目标函数的显著增大,将多个目标的梯度信息方向整合为一个方向进行协同搜索;并且还提出了一种新的选择置点法,以加快算法初始寻优速度并提供优良的初始种群。通过对ZDT系列测试函数的仿真可以看出,HSMGOA在较少的运行次数下,其性能远远优于NSGA2算法。最后将HSMGOA与NSGA2混合以解决补料分批生化反应过程的动态多目标优化问题,并将取得的Pareto最优解集与NSGA2、MOPSO比较可知,该混合算法在解决该化工问题时表现出了更好的性能。 展开更多
关键词 多目标 优化算法 梯度信息 选择置点法 补料分批生化反应器 动态优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部