针对大港油田孔南地区油藏具有高凝、高黏和高矿化度等特点及水驱开发效果较差的问题,进行了疏水缔合聚合物/表面活性剂二元复合体系应用的可行性研究。分别考察了疏水缔合聚合物AP-P7溶液及由聚合物AP-P7和非离子表面活性剂官109PS985...针对大港油田孔南地区油藏具有高凝、高黏和高矿化度等特点及水驱开发效果较差的问题,进行了疏水缔合聚合物/表面活性剂二元复合体系应用的可行性研究。分别考察了疏水缔合聚合物AP-P7溶液及由聚合物AP-P7和非离子表面活性剂官109PS985组成的聚/表复合二元体的系黏度、分子线团尺寸、界面张力及其影响因素,采用β-环糊精作为调节剂改善疏水缔合聚合物油藏适应性,分析了高凝高黏油藏聚合物和聚/表二元复合驱提高采收率机制。结果表明,β-环糊精可改变疏水缔合聚合物分子形态结构,使其与岩心孔喉匹配性变强,减少堵塞。由注入水和软化水配制的浓度2000 mg/L的聚合物溶液黏度分别为223.4 m Pa·s和302.5 m Pa·s,而加入0.07%的β-环糊精后的黏度分别为26.5 m Pa·s和35.3 m Pa·s,加入β-环糊精后聚合物AP-P7溶液的黏度明显降低。调节剂β-环糊精加量由0.001%增加至0.07%时,聚合物的分子线团尺寸由235 nm降至155 nm。此外,β-环糊精加量由0.001%增至0.07%或溶剂水中钙镁离子浓度由508 mg/L降低至0时,聚/表二元体系与原油间界面张力降低,洗油效率提高。将含有β-环糊精的由注入水配制的浓度2000 mg/L的AP-P7溶液注入气测渗透率3500×10^(-3)μm^2的岩心,β-环糊精加量由0.001%增至0.07%时,阻力系数和参数阻力系数分别由35.6和15.9分别降至25.7和11.0。在聚/表二元复合体系(Cp=2000 mg/L,Cs=2000 mg/L)中加入0.02%的β-环糊精,软化水配制的聚/表二元复合体系的黏度(81.5 m Pa·s)高于未除去加药后注入水中沉淀的含垢水所配制的聚/表二元复合体系的黏度(69.5 m Pa·s),但后者的阻力系数和残余阻力系数高于前者的,后者的注入压力也高于前者的。展开更多
The applicability of the density rule of Pathwardhan and Kumer and the rule based on the linear isopiestic relation is studied by comparison with experimental density data in the literature. Predicted and measured val...The applicability of the density rule of Pathwardhan and Kumer and the rule based on the linear isopiestic relation is studied by comparison with experimental density data in the literature. Predicted and measured values for 18 electrolyte mixtures are compared. The two rules are good for mixtures with and without common ions, including those containing associating ions. The deviations of the rule based on the linear isopiestic relation are slightly higher for the mixtures involving very strong ion complexes, but the predictions are still quite satisfactory.The density rule of Pathwardhan and Kumer is more accurate for these mixtures. However, it is not applicable for mixtures containing non-electrolytes. The rule based on the linear isopiestic relation is extended to mixtures involving non-electrolytes. The predictions for the mixtures containing both electrolytes and non-electrolytes and the non-electrolyte mixtures are accurate. All these results indicate that this rule is a widely applicable approach.展开更多
文摘针对大港油田孔南地区油藏具有高凝、高黏和高矿化度等特点及水驱开发效果较差的问题,进行了疏水缔合聚合物/表面活性剂二元复合体系应用的可行性研究。分别考察了疏水缔合聚合物AP-P7溶液及由聚合物AP-P7和非离子表面活性剂官109PS985组成的聚/表复合二元体的系黏度、分子线团尺寸、界面张力及其影响因素,采用β-环糊精作为调节剂改善疏水缔合聚合物油藏适应性,分析了高凝高黏油藏聚合物和聚/表二元复合驱提高采收率机制。结果表明,β-环糊精可改变疏水缔合聚合物分子形态结构,使其与岩心孔喉匹配性变强,减少堵塞。由注入水和软化水配制的浓度2000 mg/L的聚合物溶液黏度分别为223.4 m Pa·s和302.5 m Pa·s,而加入0.07%的β-环糊精后的黏度分别为26.5 m Pa·s和35.3 m Pa·s,加入β-环糊精后聚合物AP-P7溶液的黏度明显降低。调节剂β-环糊精加量由0.001%增加至0.07%时,聚合物的分子线团尺寸由235 nm降至155 nm。此外,β-环糊精加量由0.001%增至0.07%或溶剂水中钙镁离子浓度由508 mg/L降低至0时,聚/表二元体系与原油间界面张力降低,洗油效率提高。将含有β-环糊精的由注入水配制的浓度2000 mg/L的AP-P7溶液注入气测渗透率3500×10^(-3)μm^2的岩心,β-环糊精加量由0.001%增至0.07%时,阻力系数和参数阻力系数分别由35.6和15.9分别降至25.7和11.0。在聚/表二元复合体系(Cp=2000 mg/L,Cs=2000 mg/L)中加入0.02%的β-环糊精,软化水配制的聚/表二元复合体系的黏度(81.5 m Pa·s)高于未除去加药后注入水中沉淀的含垢水所配制的聚/表二元复合体系的黏度(69.5 m Pa·s),但后者的阻力系数和残余阻力系数高于前者的,后者的注入压力也高于前者的。
基金Supported by the Science Foundation of University of Petroleum (No. ZX9903), the Open Science Foundation of the State Key Laboratory of Heavy Oil Processing (No. 200005), and the National Natural Science Foundation of China (No. 20006010).
文摘The applicability of the density rule of Pathwardhan and Kumer and the rule based on the linear isopiestic relation is studied by comparison with experimental density data in the literature. Predicted and measured values for 18 electrolyte mixtures are compared. The two rules are good for mixtures with and without common ions, including those containing associating ions. The deviations of the rule based on the linear isopiestic relation are slightly higher for the mixtures involving very strong ion complexes, but the predictions are still quite satisfactory.The density rule of Pathwardhan and Kumer is more accurate for these mixtures. However, it is not applicable for mixtures containing non-electrolytes. The rule based on the linear isopiestic relation is extended to mixtures involving non-electrolytes. The predictions for the mixtures containing both electrolytes and non-electrolytes and the non-electrolyte mixtures are accurate. All these results indicate that this rule is a widely applicable approach.