期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于STR算法的新表压缩方法
1
作者 董爱迪 李占山 于海鸿 《计算机研究与发展》 EI CSCD 北大核心 2018年第12期2734-2740,共7页
约束传播是约束编程的关键方法,近些年来,一些约束传播算法中频繁用到简单表缩减(simple tabular reduction,STR)算法来降低约束表的空间消耗,同时提高广义弧相容(generalised arc consistent,GAC)算法的运行速度.短支持方法是在约束传... 约束传播是约束编程的关键方法,近些年来,一些约束传播算法中频繁用到简单表缩减(simple tabular reduction,STR)算法来降低约束表的空间消耗,同时提高广义弧相容(generalised arc consistent,GAC)算法的运行速度.短支持方法是在约束传播算法中使用最广泛的一种表压缩方式,但当约束表压缩率较低时,短支持方法提高运行速度效果不明显.因此提出一种压缩约束表的新算法STRO(simple tabular reduction optimization),结合短支持压缩和位操作,在提高STR算法的运行速度的同时压缩表空间效果更好.实验结果表明:在约束表的平均大小不是特别小的情况下,STRO与ShortSTR2,STR2算法相比,速度更快、效率更高;与STRbit算法相比,在时间上可以替代STRbit算法,但STRO算法的表压缩率更大、更加节省空间. 展开更多
关键词 约束传播 约束编程 约束 表压缩方法 位操作 广义弧相容 简单缩减
下载PDF
A Novel Multichannel Audio Signal Compression Method Based on Tensor Representation and Decomposition 被引量:2
2
作者 WANG Jing XIE Xiang KUANG Jingming 《China Communications》 SCIE CSCD 2014年第3期80-90,共11页
Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.Th... Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.The multichannel audio is represented with 3-order tensor space and is decomposed into core tensor with three factor matrices in the way of channel,time and frequency.Only the truncated core tensor is transmitted which will be multiplied by the pre-trained factor matrices to reconstruct the original tensor space.Objective and subjective experiments have been done to show a very noticeable compression capability with an acceptable output quality.The novelty of the proposed compression method is that it enables both high compression capability and backward compatibility with limited signal distortion to the hearing. 展开更多
关键词 multichannel audio signal compression tensor decomposition Tuckermodel core tensor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部