Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. T...Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.展开更多
The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing image...The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing images, this study utilizes geomorphology and landscape ecology to monitor and analyze the aeolian geomorphology characteristics of the Horqin Sandy Land. Results show that the sand dunes of the Horqin Sandy Land are mainly distributed on alluvial plains along the banks of the mainstream and tributaries of the Western Liao River, and the sand dune types tend to simplify from west to east and from south to north. The aeolian geomorphology coverage tend to be decreasing in the past 40 years, with an average annual change rate of 0.31%. While the area of traveling dunes decreased, the area of fixed and semi-fixed dunes increased. The fractal dimensions of various types of sand dune have all remained relatively constant between 1.07 and 1.10, suggesting that they are experiencing a relatively stable evolutionary process. There is a complex interaction between fluvial and aeolian processes of the Horqin Sandy Land, which plays a central role in surface landscape molding. Sand dunes on both sides of different rivers on the Horqin Sandy Land present certain regularity and different characteristics in terms of morphology, developmental scale, and spatial pattern. There are six fluvial-aeolian interaction modes in this area: supply of sand sources by rivers for sand dune development, complete obstruction of dune migration by rivers, partial obstruction of dune migration by rivers, influence of river valleys on dune developmental types on both sides, influence of river valleys on dune developmental scale on both sides, and river diversion due to obstruction and forcing by sand dunes. This study deepens our understanding of the surface process mechanism of the interaction between fluvial and aeolian processes in semi-arid regions, and provides a basis for researches on regional landscape responses in the context of global environmental change.展开更多
The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from differen...The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.展开更多
Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogen...Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.展开更多
基金Project (No. 1999[95]) supported by the Education Ministry of China.
文摘Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.
基金Under the auspices of Natural National Science Foundation of China(No.41671002,41401002)
文摘The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing images, this study utilizes geomorphology and landscape ecology to monitor and analyze the aeolian geomorphology characteristics of the Horqin Sandy Land. Results show that the sand dunes of the Horqin Sandy Land are mainly distributed on alluvial plains along the banks of the mainstream and tributaries of the Western Liao River, and the sand dune types tend to simplify from west to east and from south to north. The aeolian geomorphology coverage tend to be decreasing in the past 40 years, with an average annual change rate of 0.31%. While the area of traveling dunes decreased, the area of fixed and semi-fixed dunes increased. The fractal dimensions of various types of sand dune have all remained relatively constant between 1.07 and 1.10, suggesting that they are experiencing a relatively stable evolutionary process. There is a complex interaction between fluvial and aeolian processes of the Horqin Sandy Land, which plays a central role in surface landscape molding. Sand dunes on both sides of different rivers on the Horqin Sandy Land present certain regularity and different characteristics in terms of morphology, developmental scale, and spatial pattern. There are six fluvial-aeolian interaction modes in this area: supply of sand sources by rivers for sand dune development, complete obstruction of dune migration by rivers, partial obstruction of dune migration by rivers, influence of river valleys on dune developmental types on both sides, influence of river valleys on dune developmental scale on both sides, and river diversion due to obstruction and forcing by sand dunes. This study deepens our understanding of the surface process mechanism of the interaction between fluvial and aeolian processes in semi-arid regions, and provides a basis for researches on regional landscape responses in the context of global environmental change.
基金Under the auspices of National Natural Science Foundation of China (No 40971116)Major State Basic Research Development Program of China (No 2009CB426305)Technology Innovation Project of Northeast Normal University in Eleventh Five-Year Plan Period (No NENU-Stb07002)
文摘The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.
基金supported by the National Natural Science Foundation of China (No. 51579213)the National Key Research and Development Program of China (No. 2017YFC0403303)
文摘Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.