Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe b...Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.展开更多
Despite the fact that miombo woodland soils have significant implications in global climate change processes, few studies have been done to characterize and classify the soils of the miombo woodland ecosystem of Tanza...Despite the fact that miombo woodland soils have significant implications in global climate change processes, few studies have been done to characterize and classify the soils of the miombo woodland ecosystem of Tanzania. The current study was carried out to map and classify soils of Kitonga Forest Reserve, which is a typical miombo woodland ecosystem, in order to generate relevant information for their use and management. A representative study area of 52 km2 was selected and mapped at a scale of 1:50,000 on the basis of relief. Ten representative soil profiles were excavated and described using standard methods. Soil samples were taken from genetic soil horizons and analyzed in the laboratory for physico-chemical characteristics using standard methods. Using field and laboratory analytical data, the soils were classified according to the FAO-World Reference Base (FAO-WRB) for Soil Resources system as Cambisols, Leptosols and Fluvisols. In the USDA-NRCS Soil Taxonomy system the soils were classified as Inceptisols and Entisols. Topographical features played an important role in soil formation. The different soil types differed in physico-chemical properties, hence exhibit differences in their potentials, constraints and need specific management strategies. Texture varied from sandy to different loams; pH from 5.1 to 5.9; organic carbon from 0.9 g/kg to 20 g/kg; and CEC from 3 cmol/(+)kg to 24 cmol/(+)kg. Sustainable management of miombo woodlands ecosystem soils requires reduced deforestation and reduced land degradation.展开更多
基金Supported by Forestry Science and Technology Program of Hunan Province(XLK201406)~~
文摘Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.
文摘Despite the fact that miombo woodland soils have significant implications in global climate change processes, few studies have been done to characterize and classify the soils of the miombo woodland ecosystem of Tanzania. The current study was carried out to map and classify soils of Kitonga Forest Reserve, which is a typical miombo woodland ecosystem, in order to generate relevant information for their use and management. A representative study area of 52 km2 was selected and mapped at a scale of 1:50,000 on the basis of relief. Ten representative soil profiles were excavated and described using standard methods. Soil samples were taken from genetic soil horizons and analyzed in the laboratory for physico-chemical characteristics using standard methods. Using field and laboratory analytical data, the soils were classified according to the FAO-World Reference Base (FAO-WRB) for Soil Resources system as Cambisols, Leptosols and Fluvisols. In the USDA-NRCS Soil Taxonomy system the soils were classified as Inceptisols and Entisols. Topographical features played an important role in soil formation. The different soil types differed in physico-chemical properties, hence exhibit differences in their potentials, constraints and need specific management strategies. Texture varied from sandy to different loams; pH from 5.1 to 5.9; organic carbon from 0.9 g/kg to 20 g/kg; and CEC from 3 cmol/(+)kg to 24 cmol/(+)kg. Sustainable management of miombo woodlands ecosystem soils requires reduced deforestation and reduced land degradation.