The surface geometry, electronic structure, and magnetism of Eu@C60 monolayer absorbed on Ag(111) have been investigated within the framework of density functional theory. The Eu@C60 monolayer has been constructed on ...The surface geometry, electronic structure, and magnetism of Eu@C60 monolayer absorbed on Ag(111) have been investigated within the framework of density functional theory. The Eu@C60 monolayer has been constructed on Ag(111) substrate by one of the hexagon faces of C60 downward and its mirror plane face parallel to Ag(111). The Eu@C60 monolayer induces a recon- struction of the Ag(111) substrate and the perpendicular distance between the Eu@C60 and Ag(111) surface is 2.06 A, being shorter than that between C60 and Ag(lll) surface by 0.05A. There is no chemical bond formed between the Eu@C60 and Ag(111), and only 0.55e transferred from Ag(111) to Eu@C60. A large magnetic moment about 6.80/μB per unit cell is found for Eu@C60/Ag(111) system.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874039 and 11147172)support from the National Basic Research Program of China (Grant No. 2011CB606401)
文摘The surface geometry, electronic structure, and magnetism of Eu@C60 monolayer absorbed on Ag(111) have been investigated within the framework of density functional theory. The Eu@C60 monolayer has been constructed on Ag(111) substrate by one of the hexagon faces of C60 downward and its mirror plane face parallel to Ag(111). The Eu@C60 monolayer induces a recon- struction of the Ag(111) substrate and the perpendicular distance between the Eu@C60 and Ag(111) surface is 2.06 A, being shorter than that between C60 and Ag(lll) surface by 0.05A. There is no chemical bond formed between the Eu@C60 and Ag(111), and only 0.55e transferred from Ag(111) to Eu@C60. A large magnetic moment about 6.80/μB per unit cell is found for Eu@C60/Ag(111) system.