This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived...This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.展开更多
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic param...Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.展开更多
文摘This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003,2011ZX05006-002)SINOPEC Key Laboratory of Geophysics+2 种基金Science Foundation for Post-doctoral Scientists of ChinaScience Foundation for Post-doctoral Scientists of Shandongthe Western Australian Energy Research Alliance(WA:ERA)
文摘Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.