Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based o...Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based on the theory of the additional stress which is the main reason for these failures, this study focuses on the treatment effect of underground continuous impervious curtain(UCIC) in terms of different factors, namely, the location, shape, range, and width, by using numerical simulation. Results show that the UCIC can reduce the stress concentration in the shaft lining formed in the bottom aquifer. The UCIC can also reinforce the shaft lining at different angles and can be applied in actual situations. The strength factors of the inner surface of the shaft lining increase after the UCIC are used. The material strength and width of the UCIC show an obvious effect on the stability of the shaft lining. Results proved that the UCIC could effectively strengthen the stability of the shaft lining when it was built in the aquifer or built in the aquifer and above and below the layer.展开更多
The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can ...The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can only eliminate the oxide film on the plate surface,but it can hardly produce a hard layer on the plate surface.The bonding effect depends on the element diffusion promoted by the close contact between the metals on both sides of the interface.After anodic oxidation,there is a hard layer on the metal surface,and the hard layer broken during the rolling process forms a mechanical occlusion at the bonding interface.However,the hard layer cannot form an effective combination with the metal at the interface,and the bonding can only occur in the fresh metal bonding area at the crack of the hard layer.The acid-alkali washing treatment can completely remove the hard layer on the surface of both alloys without increasing the surface roughness of the plate,and the metal on both sides of the interface is more closely bonded during the rolling process.The optimal bonding strength can be obtained by surface treatment of acid-alkali washing for the aluminum-magnesium hot-rolled bonding.展开更多
Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud...Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.展开更多
We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibr...We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibration frequency range 0<ω<1400.The triangular rough elements are uniformly distributed over the top and bottom surfaces,and the vibration is applied in the horizontal direction.It is shown that under the combined action of roughness and horizontal vibration,with increasing the vibration frequency ω,the heat transfer is initially decreased a little and then greatly enhanced after ω exceeds the critical value.The physical reason for massive heat-transfer-enhancement is that high frequency vibration destabilizes thermal boundary layers(BL)over rough surfaces,triggers abundant emissions of thermal plumes,and strengthens the motion of large-scale circulation(LSC),which consequently thins the thickness of thermal BL and heightens the convective transport.In addition,it is shown that vibration-induced heat-transfer-enhancement can obviously affect the scaling behavior between the heat flux and the Rayleigh number,and the scaling exponent increases with increasing ω,whereas the influence of vibration on the scaling behavior between the intensity of LSC and Ra is very weak.展开更多
基金the National Natural Science Foundation of China (No. 51304209)the Basic Research Program of Jiangsu Province (Natural Science Foundation) (No. BK20130179)
文摘Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based on the theory of the additional stress which is the main reason for these failures, this study focuses on the treatment effect of underground continuous impervious curtain(UCIC) in terms of different factors, namely, the location, shape, range, and width, by using numerical simulation. Results show that the UCIC can reduce the stress concentration in the shaft lining formed in the bottom aquifer. The UCIC can also reinforce the shaft lining at different angles and can be applied in actual situations. The strength factors of the inner surface of the shaft lining increase after the UCIC are used. The material strength and width of the UCIC show an obvious effect on the stability of the shaft lining. Results proved that the UCIC could effectively strengthen the stability of the shaft lining when it was built in the aquifer or built in the aquifer and above and below the layer.
基金National Key Research and Development Program(2018YFA0707300)National Natural Science Foundation of China(52075472)Hebei Natural Science Foundation(E2023203129)。
文摘The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can only eliminate the oxide film on the plate surface,but it can hardly produce a hard layer on the plate surface.The bonding effect depends on the element diffusion promoted by the close contact between the metals on both sides of the interface.After anodic oxidation,there is a hard layer on the metal surface,and the hard layer broken during the rolling process forms a mechanical occlusion at the bonding interface.However,the hard layer cannot form an effective combination with the metal at the interface,and the bonding can only occur in the fresh metal bonding area at the crack of the hard layer.The acid-alkali washing treatment can completely remove the hard layer on the surface of both alloys without increasing the surface roughness of the plate,and the metal on both sides of the interface is more closely bonded during the rolling process.The optimal bonding strength can be obtained by surface treatment of acid-alkali washing for the aluminum-magnesium hot-rolled bonding.
基金supported by the National Natural Science Foundation of China(Grant No.41125017)the National Basic Research Program of China(Grant No.2010CB951904)
文摘Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102,92052201,91852202,H825204,and 11972220)the Program of Shanghai Academic Research Leader(Grant No.19XD1421400)+1 种基金Shanghai Science and Technology Program(Grant Nos.19JC1412802 and 20ZR14I9800)China Postdoctoral Science Foundation(Grant No.2020M681259).
文摘We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibration frequency range 0<ω<1400.The triangular rough elements are uniformly distributed over the top and bottom surfaces,and the vibration is applied in the horizontal direction.It is shown that under the combined action of roughness and horizontal vibration,with increasing the vibration frequency ω,the heat transfer is initially decreased a little and then greatly enhanced after ω exceeds the critical value.The physical reason for massive heat-transfer-enhancement is that high frequency vibration destabilizes thermal boundary layers(BL)over rough surfaces,triggers abundant emissions of thermal plumes,and strengthens the motion of large-scale circulation(LSC),which consequently thins the thickness of thermal BL and heightens the convective transport.In addition,it is shown that vibration-induced heat-transfer-enhancement can obviously affect the scaling behavior between the heat flux and the Rayleigh number,and the scaling exponent increases with increasing ω,whereas the influence of vibration on the scaling behavior between the intensity of LSC and Ra is very weak.