The reuse of wastewater for the irrigation of farmlands is gaining popularity, and the nutrient leaching associated with wastewater irrigation is becoming a matter of concern. The variability of nitrogen and phosphoru...The reuse of wastewater for the irrigation of farmlands is gaining popularity, and the nutrient leaching associated with wastewater irrigation is becoming a matter of concern. The variability of nitrogen and phosphorus frac- tions in wastewater-irrigated soil was investigated in both horizontal and vertical directions in Kongjiaxiang, Tongliao, Inner Mongolia, China. The results showed that wastewater irrigation resulted in the concentrations of available N and P being 40.36% and 66.49% higher, respectively, than those with groundwater irrigation. Different forms of N and P exhibited significantly different distribution pattems. Higher concentrations of NO~ and total available N, as well as of those of Ca-P and total available P were observed near wastewater irrigation channels. Ca-P has a spatial distribu- tion pattern similar to that of available P. The concentrations of NO3 and NH4 were the highest in top soil and de- creased with depth. The complex interactions between nitrate leaching and nitrogen transformation processes (e.g., nitrification, denitrification, and mineralization) determined the vertical profile of NO3. The significant amount of NH~ loss inhibited its deep seepage. The Ca-bound compound contained more P than other inorganic fractions as a result of high Ca levels throughout the soil profile. The differences in the concentrations of Ca-bound P at different depths could be due to the upward flux or translocation of Ca from subsurface to surface soil and the sequestration of P.展开更多
Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This stud...Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This study developed a non-algorithm approach, i.e., applying inverse distance weighting (IDW) and ordinary kriging (OK), to individual land use types rather than to the whole watershed, to determine if this improved the performance in mapping soil total C (TC), total N (TN), and total P (TP) in a 200-km2 urbanizing watershed in Southeast China. Four land use types were identified by visual interpretation as forest land, agricultural land, green land, and urban land. One hundred and fifty soil samples (0-10 cm) were taken according to land use type and patch size. Results showed that the non-algorithm approach, interpolation based on individual land use types, substantially improved the performance of IDW and OK for mapping TC, TN, and TP in the watershed. Root mean square errors were reduced by 3.9% for TC, 10.770 for TN, and 25.9% for TP by the application of IDW, while the improvements by OK were slightly lower as 0.9% for TC, 7.7% for TN, and 18.1% for TP. Interpolations based on individual land use types visually improved depiction of spatial patterns for TC, TN, and TP in the watershed relative to interpolations by the whole watershed. Substantial improvements might be expected with denser sampling points. We suggest that this non-algorithm approach might provide an alternative to algorithm-based approaches to depict watershed-scale nutrient patterns.展开更多
基金Supported by Major State Basic Research Program of China ("973" Program, No.2009CB118607)Inner Mongolia Science and Technology Foundation (No. 2009058)
文摘The reuse of wastewater for the irrigation of farmlands is gaining popularity, and the nutrient leaching associated with wastewater irrigation is becoming a matter of concern. The variability of nitrogen and phosphorus frac- tions in wastewater-irrigated soil was investigated in both horizontal and vertical directions in Kongjiaxiang, Tongliao, Inner Mongolia, China. The results showed that wastewater irrigation resulted in the concentrations of available N and P being 40.36% and 66.49% higher, respectively, than those with groundwater irrigation. Different forms of N and P exhibited significantly different distribution pattems. Higher concentrations of NO~ and total available N, as well as of those of Ca-P and total available P were observed near wastewater irrigation channels. Ca-P has a spatial distribu- tion pattern similar to that of available P. The concentrations of NO3 and NH4 were the highest in top soil and de- creased with depth. The complex interactions between nitrate leaching and nitrogen transformation processes (e.g., nitrification, denitrification, and mineralization) determined the vertical profile of NO3. The significant amount of NH~ loss inhibited its deep seepage. The Ca-bound compound contained more P than other inorganic fractions as a result of high Ca levels throughout the soil profile. The differences in the concentrations of Ca-bound P at different depths could be due to the upward flux or translocation of Ca from subsurface to surface soil and the sequestration of P.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YWJC402)the Hundred Talents Program of Chinese Academy of Sciences(No.A0815)+1 种基金the National Natural Science Foundation of China(No.41371474)supported by the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists in 2011(No.2011T2Z18)
文摘Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This study developed a non-algorithm approach, i.e., applying inverse distance weighting (IDW) and ordinary kriging (OK), to individual land use types rather than to the whole watershed, to determine if this improved the performance in mapping soil total C (TC), total N (TN), and total P (TP) in a 200-km2 urbanizing watershed in Southeast China. Four land use types were identified by visual interpretation as forest land, agricultural land, green land, and urban land. One hundred and fifty soil samples (0-10 cm) were taken according to land use type and patch size. Results showed that the non-algorithm approach, interpolation based on individual land use types, substantially improved the performance of IDW and OK for mapping TC, TN, and TP in the watershed. Root mean square errors were reduced by 3.9% for TC, 10.770 for TN, and 25.9% for TP by the application of IDW, while the improvements by OK were slightly lower as 0.9% for TC, 7.7% for TN, and 18.1% for TP. Interpolations based on individual land use types visually improved depiction of spatial patterns for TC, TN, and TP in the watershed relative to interpolations by the whole watershed. Substantial improvements might be expected with denser sampling points. We suggest that this non-algorithm approach might provide an alternative to algorithm-based approaches to depict watershed-scale nutrient patterns.