Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surf...Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.展开更多
The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface poten...The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation.The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations.The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m^2.The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m^2.The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory.The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size o...The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.展开更多
Isothermal and isochronal annealing was conducted to study the thermal stability of the nanocrystalline in the surface layer of Mg alloy AZ91D induced by high-energy shot peening(HESP) .Field emission scanning electro...Isothermal and isochronal annealing was conducted to study the thermal stability of the nanocrystalline in the surface layer of Mg alloy AZ91D induced by high-energy shot peening(HESP) .Field emission scanning electron microscope(FESEM) and X-ray diffractometer were used to characterize the microstructure.Results showed that nanocrystalline produced by HESP on the surface layer of the magnesium alloy AZ91D was 60-70 nm on average.The nanocrystalline could remain stable at about 100℃,and grew up slowly between 100℃ and 200℃.When the annealing temperature reached 300℃,the growth rate of the nanocrystalline increased significantly.The kinetic coefficient n of the nanocrystalline growth was calculated to be 2-3 and the grain growth activation energy Q=39.7 kJ/mol,far less than the self-diffusion activation energy of magnesium atoms in the coarse polycrystalline material.展开更多
Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synt...Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.展开更多
Tungsten boride(WB) crystals, whose surface tends to be oxidized when exposed to air, were demonstrated to have a comparable activity to platinum as counter electrode material in dye-sensitized solar cells. The synerg...Tungsten boride(WB) crystals, whose surface tends to be oxidized when exposed to air, were demonstrated to have a comparable activity to platinum as counter electrode material in dye-sensitized solar cells. The synergistic effect of both catalytically active surface layer WOxand electronically conductive internal WB is considered to be responsible for the high activity of the WB crystals.展开更多
文摘Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.
基金supported by the National Natural Science Foundation of China(No.41877026)the Natural Science Foundation Project of CQ CSTC(cstc2018jcyj AX0318)the“Guangjiong”Project of Southwest University,China(201716)。
文摘The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation.The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations.The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m^2.The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m^2.The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory.The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
基金Project(20180550242)supported by the Liaoning Science and Technology Plan,China。
文摘The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.
文摘Isothermal and isochronal annealing was conducted to study the thermal stability of the nanocrystalline in the surface layer of Mg alloy AZ91D induced by high-energy shot peening(HESP) .Field emission scanning electron microscope(FESEM) and X-ray diffractometer were used to characterize the microstructure.Results showed that nanocrystalline produced by HESP on the surface layer of the magnesium alloy AZ91D was 60-70 nm on average.The nanocrystalline could remain stable at about 100℃,and grew up slowly between 100℃ and 200℃.When the annealing temperature reached 300℃,the growth rate of the nanocrystalline increased significantly.The kinetic coefficient n of the nanocrystalline growth was calculated to be 2-3 and the grain growth activation energy Q=39.7 kJ/mol,far less than the self-diffusion activation energy of magnesium atoms in the coarse polycrystalline material.
基金the National Natural Science Foundation of China(21875133)Xijiang R&D Team(Wang X),the Science and Technology Program of Guangzhou(2019050001)Science and Technology Commission of Shanghai Municipality(19ZR1479500)。
文摘Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.
基金supported by the National Basic Research Program of China(2014CB239401)the National Natural Science Foundation of China(51422210,51629201,51521091)
文摘Tungsten boride(WB) crystals, whose surface tends to be oxidized when exposed to air, were demonstrated to have a comparable activity to platinum as counter electrode material in dye-sensitized solar cells. The synergistic effect of both catalytically active surface layer WOxand electronically conductive internal WB is considered to be responsible for the high activity of the WB crystals.