Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on t...A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on those ideas,several primary rules are suggested.The v-support vector regression method is used to generate a mathematical expression according to rule data.It enables to make correction according to any given rules parameters.Experimental results demonstrate applying rules calculated from the expression match well with that from the rule table.展开更多
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic...Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.展开更多
The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson'...The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson's formula and Poisson-Jensen formula in multiply connected domains; the differentiability theorem with respect to the parameter of analytic function family containing one parametric variable on multiply connected domains; variation theorem and parametric representation theorem of univalent functions in multiply connected domains; the solution of an extremal problem of differentiable functionals.展开更多
Response surface methodology (RSM) is an important tool for process parameter optimization, robust design and other quality improvement efforts. When the relationship between influential input variables and output res...Response surface methodology (RSM) is an important tool for process parameter optimization, robust design and other quality improvement efforts. When the relationship between influential input variables and output response is very complex, it’s hard to find the real response surface using RSM. In recent years artificial neural network(ANN) has been used in RSM. But the classical ANN does not work well under the constraints of real applications. An algorithm of regression-based ANN(R-ANN) is proposed in this paper, which is a supplement to the classical ANN methodology. It makes network closer to the response surface, so that training time is reduced and robustness is strengthened. The procedure of improving ANN by regressions is described and the comparisons among R-ANN,RSM and classical ANN are computed graphically in three examples. Our research shows that the R-ANN methodology is a good supplement to the RSM and classical ANN methodology, which can yield lower standard error of prediction under conditions that the scope of experiment is rigidly restricted.展开更多
In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transform...In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.展开更多
Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description fo...Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.展开更多
We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derive...We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derived and studied in detail. The superconducting lead influences the heat generation significantly. An obvious step appears in Q - eV characteristics and the iocation of this step is related with the phonon frequency ωo. The heat generations exhibit very different behaviour in the condition eV 〈 △ and eV 〉 △ due to different tunneling mechanism. From the study of Q - eVg curves, there is an extra peak as eV 〉 △. The difference in this two cases is also shown in Q - ωo curve, an extra peak emerges as eV 〉 △.展开更多
As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimat...As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.展开更多
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt d...We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.展开更多
A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characterist...A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characteristic values--the general radiance level L,the visible-infrared radiation balance B and the band radiance variation vector (direction and speed) V were calculated.Then the 769 class units were sorted into 106 groups based on their natural characteristics.The means and standard deviations of L,B and V values for all the groups were calculated.The distributions of the 106 groups or the 769 units on the number axes of L,B and V,in the planes of L-B,L-V and B-V,and in the space of L-B-V were investigated.Finally,the typical numerical characteristics of the various ground features are discussed in consideration of their worldwide variations in the present paper.展开更多
The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodyna...The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodynamic problems such as multi-body interaction and tank side wall effect cannot be properly dealt with based on the traditional free-surface frequency domain Green function method, in which the water viscosity is omitted and the energy dissipation effect is absent. In this paper, an open-sea Green function with viscous dissipation was presented within the theory ofvisco-potential flow. Then the tank Green function with a partial reflection from the side walls in wave tanks was formulated as a formal sum of open-sea Green functions representing the infinite images between two parallel side walls of the source in the tank. The new far-field characteristics of the tank Green function is vitally important fur improving the validity of side-wall effects evaluation, which can be used in supervising the tank model tests.展开更多
Diffusion-weighted magnetic resonance imaging(DWI)is a well established method for the evaluation of intracranial diseases,such as acute stroke.DWI for extracranial application is more difficult due to physiological m...Diffusion-weighted magnetic resonance imaging(DWI)is a well established method for the evaluation of intracranial diseases,such as acute stroke.DWI for extracranial application is more difficult due to physiological motion artifacts and the heterogeneous composition of the organs.However,thanks to the newer technical development of DWI,DWI has become increasingly used over the past few years in extracranial organs including the abdomen and pelvis.Most previous studies of DWI have been limited to the evaluation of diffuse parenchymal abnormalities and focal lesions in abdominal organs,whereas there are few studies about DWI for the evaluation of the biliopancreatic tract.Although further studies are needed to determine its performance in evaluating bile duct,gallbladder and pancreas diseases,DWI has potential in the assessment of the functional information on the biliopancreatic tract concerning the status of tissue cellularity,because increased cellularity is associated with impeded diffusion,as indicated by a reduction in the apparent diffusion coefficient.The detection of malignant lesions and their differentiation from benign tumor-like lesions in the biliopancreatic tract could be improved using DWI in conjunction with findings obtained with conventional magnetic resonance cholagiopancreatography.Additionally,DWI can be useful for the assessment of the biliopancreatic tract in patients with renal impairment because contrast-enhanced computed tomography or magnetic resonance scans should be avoided in these patients.展开更多
This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag. The ITTC 1957 model-ship correlation line was used to predict fri...This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag. The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints. Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24, 0.316 and 0.408. In one case the ES technique was ran for the initial hull form, where the main dimensions were fixed and the only variables were the hull offsets. In the other case in addition to hull offsets, the raain dimensions were considered as variables that are optimized simultaneously. The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.展开更多
Shallow surface wave methods are mostly used for investigation of the surface velocity structure in environmental and engineering geophysics in non-desert areas. For the special geological features of the Takelamagan ...Shallow surface wave methods are mostly used for investigation of the surface velocity structure in environmental and engineering geophysics in non-desert areas. For the special geological features of the Takelamagan Desert area, we use the multi-channel analysis of surface wave (MASW) method to process multi-channel shallow surface wave records to determine the near surface velocity structure in the desert area. We also process, analyze, and compare the surface waves in many-trace records extracted from the oil exploration shot gathers in the area. We show that the MASW method can determine detailed shallow velocity structure in desert areas and the many-trace records can be used to get detailed deep geological structure. The combination of the two different datasets can obtain the exact velocity structure upper 60 m depth in the survey area.展开更多
In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can ...In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.展开更多
Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But th...Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.展开更多
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
文摘A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on those ideas,several primary rules are suggested.The v-support vector regression method is used to generate a mathematical expression according to rule data.It enables to make correction according to any given rules parameters.Experimental results demonstrate applying rules calculated from the expression match well with that from the rule table.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China+1 种基金Project(2016YFB0300901)supported by the Major State Research Program of ChinaProject(2013A017)supported by the Bagui Scholars Program of Guangxi Zhuang Autonomous Region,China
文摘Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.
文摘The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson's formula and Poisson-Jensen formula in multiply connected domains; the differentiability theorem with respect to the parameter of analytic function family containing one parametric variable on multiply connected domains; variation theorem and parametric representation theorem of univalent functions in multiply connected domains; the solution of an extremal problem of differentiable functionals.
文摘Response surface methodology (RSM) is an important tool for process parameter optimization, robust design and other quality improvement efforts. When the relationship between influential input variables and output response is very complex, it’s hard to find the real response surface using RSM. In recent years artificial neural network(ANN) has been used in RSM. But the classical ANN does not work well under the constraints of real applications. An algorithm of regression-based ANN(R-ANN) is proposed in this paper, which is a supplement to the classical ANN methodology. It makes network closer to the response surface, so that training time is reduced and robustness is strengthened. The procedure of improving ANN by regressions is described and the comparisons among R-ANN,RSM and classical ANN are computed graphically in three examples. Our research shows that the R-ANN methodology is a good supplement to the RSM and classical ANN methodology, which can yield lower standard error of prediction under conditions that the scope of experiment is rigidly restricted.
基金This research is sponsored by the Scientific Research Project of the China Geological Survey "Basic Theory, Special Collection and Special Process Method Research on Metal Mineral Seismic Exploration" (Project Number: 2000201 0002146).
文摘In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.
文摘Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 10B022Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ4005
文摘We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By using nonequilibrium Green's function method, the heat generation Q is derived and studied in detail. The superconducting lead influences the heat generation significantly. An obvious step appears in Q - eV characteristics and the iocation of this step is related with the phonon frequency ωo. The heat generations exhibit very different behaviour in the condition eV 〈 △ and eV 〉 △ due to different tunneling mechanism. From the study of Q - eVg curves, there is an extra peak as eV 〉 △. The difference in this two cases is also shown in Q - ωo curve, an extra peak emerges as eV 〉 △.
基金Project(TC160A310-10-01)supported by the National Industry Base Enhanced Program,ChinaProjects(2015B090926002,2013A090100002)supported by Science and Technology of Guangdong Province,ChinaProject(2016AG100932)supported by Key Technology Program of Foshan,China
文摘As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.
文摘We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.
文摘A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characteristic values--the general radiance level L,the visible-infrared radiation balance B and the band radiance variation vector (direction and speed) V were calculated.Then the 769 class units were sorted into 106 groups based on their natural characteristics.The means and standard deviations of L,B and V values for all the groups were calculated.The distributions of the 106 groups or the 769 units on the number axes of L,B and V,in the planes of L-B,L-V and B-V,and in the space of L-B-V were investigated.Finally,the typical numerical characteristics of the various ground features are discussed in consideration of their worldwide variations in the present paper.
基金Supported by NSFC Project(51009037)"111"Program(B07019)
文摘The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodynamic problems such as multi-body interaction and tank side wall effect cannot be properly dealt with based on the traditional free-surface frequency domain Green function method, in which the water viscosity is omitted and the energy dissipation effect is absent. In this paper, an open-sea Green function with viscous dissipation was presented within the theory ofvisco-potential flow. Then the tank Green function with a partial reflection from the side walls in wave tanks was formulated as a formal sum of open-sea Green functions representing the infinite images between two parallel side walls of the source in the tank. The new far-field characteristics of the tank Green function is vitally important fur improving the validity of side-wall effects evaluation, which can be used in supervising the tank model tests.
基金Supported by Clinical research grant from Pusan National University Hospital
文摘Diffusion-weighted magnetic resonance imaging(DWI)is a well established method for the evaluation of intracranial diseases,such as acute stroke.DWI for extracranial application is more difficult due to physiological motion artifacts and the heterogeneous composition of the organs.However,thanks to the newer technical development of DWI,DWI has become increasingly used over the past few years in extracranial organs including the abdomen and pelvis.Most previous studies of DWI have been limited to the evaluation of diffuse parenchymal abnormalities and focal lesions in abdominal organs,whereas there are few studies about DWI for the evaluation of the biliopancreatic tract.Although further studies are needed to determine its performance in evaluating bile duct,gallbladder and pancreas diseases,DWI has potential in the assessment of the functional information on the biliopancreatic tract concerning the status of tissue cellularity,because increased cellularity is associated with impeded diffusion,as indicated by a reduction in the apparent diffusion coefficient.The detection of malignant lesions and their differentiation from benign tumor-like lesions in the biliopancreatic tract could be improved using DWI in conjunction with findings obtained with conventional magnetic resonance cholagiopancreatography.Additionally,DWI can be useful for the assessment of the biliopancreatic tract in patients with renal impairment because contrast-enhanced computed tomography or magnetic resonance scans should be avoided in these patients.
基金marine research institute (MRC) of AUT for some financial support of this project
文摘This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag. The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints. Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24, 0.316 and 0.408. In one case the ES technique was ran for the initial hull form, where the main dimensions were fixed and the only variables were the hull offsets. In the other case in addition to hull offsets, the raain dimensions were considered as variables that are optimized simultaneously. The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.
文摘Shallow surface wave methods are mostly used for investigation of the surface velocity structure in environmental and engineering geophysics in non-desert areas. For the special geological features of the Takelamagan Desert area, we use the multi-channel analysis of surface wave (MASW) method to process multi-channel shallow surface wave records to determine the near surface velocity structure in the desert area. We also process, analyze, and compare the surface waves in many-trace records extracted from the oil exploration shot gathers in the area. We show that the MASW method can determine detailed shallow velocity structure in desert areas and the many-trace records can be used to get detailed deep geological structure. The combination of the two different datasets can obtain the exact velocity structure upper 60 m depth in the survey area.
文摘In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.
基金the National Science Foundations of China(10571045)the National Science Foundations of Henan Province(02243700510211063100)
文摘Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.