The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP gri...The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
基金The Science and Technology Project of China Southern Pow er Grid Co.,Ltd.(No.GDKJ00000030)the National Key Technology R&D Program of China(No.2016YFC0701400)the National Natural Science Foundation of China(No.51525801)
文摘The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.