In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angl...In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angle test and the shear test. The durability of the approach is examined by the accelerated abrasion test, and the skid resistance of the pavement with surface coating is examined by the British pendulum test and the surface texture depth test. In the contact angle test, the contact angle between hydrophobic admixture and water is 100.2°. In the shear test, the maximum shear stress is 0.06 MPa for the specimen coated with hydrophobic admixture, which is much lower than that of the specimen without hydrophobic admixture coating, 3.5 MPa. Furth- ermore, the ice and asphalt surface are completely separated for the coated specimen while not for the uncoated specimen. Based on the accelerated abrasion test, the residual hydro- phobic admixture in the veins of the pavement after abrasion still has a deicing effect. From the skid resistance tests, the British pendulum number (BPN) and the texture depth (TD) of the specimen coated with hydrophobic admixtures are larger than those of the standard requirements. The overall experi-mental observation indicates that the approach can effectively reduce close contact between asphalt pavement and ice; therefore, it can be a promising solution to road icing problems in winter.展开更多
The experiments were conducted to investigate the behavior of airborne particles adhering to the glass slides which were coated by several reagent films. The results showed that the adhesion level could be significant...The experiments were conducted to investigate the behavior of airborne particles adhering to the glass slides which were coated by several reagent films. The results showed that the adhesion level could be significantly changed by the reagent films. There were no evident rules between the average size of particles and sampling time interval, the placing angle and reagent concentration. The average particle size on the surface coated by composite reagent (2-3 μm) was smaller than that on the single reagent coated surface, while the largest particle size (4-5 μm) was observed on the surface coated with the Tween 60. The experiment also demonstrated that the best adhesive performance was obtained on the surface which was coated with 0.5% SDBS and 0.5% fluorocarbon composite reagents. The experiment results indicated that each reagent had a certain optimum adhesive range to the particle. The composite reagents with different proportion of single reagents exhibited some particular physical and chemical properties, which could effectively change the adhesive performance between the solid surface and the particles.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
Ti coating on A3 steel was successfully prepared by direct electrochemical reduction of high-velocity oxy-fuel (HVOF) thermally sprayed and room-temperature dip-coating titanium dioxide coating on A3 steel in molten...Ti coating on A3 steel was successfully prepared by direct electrochemical reduction of high-velocity oxy-fuel (HVOF) thermally sprayed and room-temperature dip-coating titanium dioxide coating on A3 steel in molten CaCl2 at 850 ℃. The interfacial microstructure and mutual diffusion between coating and steel substrate were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The results show that the precursory TiO2 coating prepared by HVOF has closer contact and better adhesion with the A3 steel substrate. After electrolysis, all of the electro-generated Ti coatings show intact contact with the substrates, regardless of the original contact situation between TiO2 layer and the steel substrate in the precursors. The inter-diffusion between the iron substrate and the reduced titanium takes place at the interface. The results demonstrate the possibility of the surface electrochemical metallurgy (SECM) is a promising surface engineering and additive manufacturing method.展开更多
The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjuste...The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.展开更多
Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface thr...Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface through paint spray and curing in a multistage, dynamically changing environment. Traditionally, the quality control is solely post-process inspection based, and process operational adjustment is only experience based, thus the manufacturing may not be (highly) sustainable. In this article, a multiscale system modeling and analysis methodology is introduced for achieving a sustainable application of polymeric materials through paint spray and film curing in automotive surface coating manufacturing. By this methodology, the correlations among paint material, application processes and coating performance can be identified. The model-based analysis allows a comprehensive and deep study of the dynamic behaviors of the material, process, and product in a wide spectrum of length and time. Case studies illustrate the efficacy of the methodology for sustainable manufacturing.展开更多
Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of...Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of aluminum(Al) phase, which was compared to the pristine graphite through its dispersibity and oxidation behavior. The graphite particles with and without surface modification were added, respecticely, in an Al(NO3)3 suspension used as a coating reagent, and then filtered at room temperature. The modified graphite shows better disperbility than the pristine graphite, indicating that the coating efficiency of Al precursor is enhanced in the modified graphite. With respect to oxidation behavior, the modified graphite without the coating layer is totally reacted with oxygen at heat treatment of 900 °C in air. However, the Al-coated graphite starts to react with oxygen at heat treatment of 900 °C and fully reacted with oxygen at heat treatment of 1000 °C, showing the gray and white colors, respectively. It is verified that the Al layer is individually and uniformly formed on the surface of graphite and the oxidation resistance of graphite is enhanced owing to the increased coating efficiency of Al precursor.展开更多
In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on ...In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.展开更多
The surface of ZrO2 nanoparticles was modified by styrene coupling grafting method to improve the dispersion and interaction of the nanoparticles with the epoxy coating in which the modified ZrO2 nanoparticles were us...The surface of ZrO2 nanoparticles was modified by styrene coupling grafting method to improve the dispersion and interaction of the nanoparticles with the epoxy coating in which the modified ZrO2 nanoparticles were used as an additive. The grafting performance and microstructure of the nano- ZrO2/epoxy coating were analyzed by Fourier transformation infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The corrosion behavior of the nano-ZrO2/epoxy coating on mild steel was evaluated in neutral 3.5 wt% NaC1 solution using electrochemical impedance spectroscopy (EIS). Both the coating capacitance and coating resistance fitted by the equivalent circuit from EIS were used to evaluate the protective performance of the coating towards the mild steel. The results show a superior stability and efficient corrosion protection by the modified ZrO2 nanoparticles. The epoxy coating containing 2 wt% modified ZrO2 nanoparticles exhibited the best corrosion performance among all the coating specimens. This research may provide an insight into the protection of mild steel using modified epoxy coatings.展开更多
Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to ch...Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to characterize the phases,microstructure and composition of the coated samples.The results show that the feedstock composition has a significant impact on the phases,microstructure and thickness of the coatings.For the sample with AlCl3 powder as the activator,the coating is very thick and composed of gradient phases and structures from surface to inside,including small amount ofb-Mg2Al3,coarse eutectic-like structure ofγ-Mg17Al12+δ-Mg,and fineγ-Mg17Al12 precipitations.In contrast,for the sample with AlCl3 and pure Al composite powders as the activator,the coating is relatively thin and contains a thin Al2O3 layer and a small amount of fineγ-Mg17Al12 precipitates.For the pack-cementation aluminizing that is not protected by high-vacuum or inert gas,the addition of pure Al powders can easily introduce the Al2O3 layer into the coating to prevent active Al ions further penetrating into the magnesium matrix,resulting in the thin Al-containing coating.The microhardness and corrosion behavior of the two kinds of aluminized coatings were also studied and discussed.展开更多
Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-ici...Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.展开更多
Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding perfo...Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.展开更多
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w...Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.展开更多
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel ...Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed tmiformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.展开更多
Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coa...Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coating were used to enhance the surfaceproperties of the titanium alloy substrate.Hard and wear resistant coatings such as TiAlN and AlCrN were applied over texturedtitanium alloy surfaces with chromium as interlayer.To improve the friction and wear resisting performance of hard coatings further,solid lubricant,molybdenum disulphide(MoS2),was deposited on dimples made over hard coatings.Unidirectional sliding weartests were performed with pin on disc contact geometry,to evaluate the tribological performance of coated substrates.The tests wereperformed under three different normal loads for a period of40min at sliding velocity of2m/s.The tribological behaviours ofmulti-layer coatings such as coating structure,friction coefficient and specific wear rate were investigated and analyzed.The lowerfriction coefficient of approximately0.1was found at the early sliding stage,which reduces the material transfer and increases thewear life.Although,the friction coefficient increased to high values after MoS2coating was partially removed,substrate was stillprotected against wear by underlying hard composite layer.展开更多
A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied...A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied through orthogonal experimental methods. The factors studied were rotation speed, modifier dosage, emulsification temperature, emulsification time and heat aging time after emulsification. Optimized conditions for modification of the surface were: rotation speed 16000 r/min; modifier dosage 3%; emulsification temperature 75 ℃; emulsification time 60 min and aging time 40 min. The modified nano-CaCO3 was also studied by size-distribution measurements, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results show that the size distribution of the modified nano-CaCO3 is uniform and that there are chemi-sorption and physi-sorption between the nano-CaCO3 and the modifier. Compared to traditional architectural coatings without nano-CaCO3, the nanometer composite coatings are obviously improved in respect to dirt resistance, scrub resistance, thixotropy, water resistance, alkalinity resistance and aging resistance.展开更多
A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower co...A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower cost. Scanning electronic microscopy(SEM), optical microscope, microhardness test and wear test were adopted to detect the surface quality and the properties of the coating, such as micrograph, microstructure, micro-hardness wear resistance and adherence between the coating and the substrate. The experimental results showed that the suitable technological parameters to be used, the coatings had better the surface quality, higher hardness and wear resistance.展开更多
文摘In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angle test and the shear test. The durability of the approach is examined by the accelerated abrasion test, and the skid resistance of the pavement with surface coating is examined by the British pendulum test and the surface texture depth test. In the contact angle test, the contact angle between hydrophobic admixture and water is 100.2°. In the shear test, the maximum shear stress is 0.06 MPa for the specimen coated with hydrophobic admixture, which is much lower than that of the specimen without hydrophobic admixture coating, 3.5 MPa. Furth- ermore, the ice and asphalt surface are completely separated for the coated specimen while not for the uncoated specimen. Based on the accelerated abrasion test, the residual hydro- phobic admixture in the veins of the pavement after abrasion still has a deicing effect. From the skid resistance tests, the British pendulum number (BPN) and the texture depth (TD) of the specimen coated with hydrophobic admixtures are larger than those of the standard requirements. The overall experi-mental observation indicates that the approach can effectively reduce close contact between asphalt pavement and ice; therefore, it can be a promising solution to road icing problems in winter.
基金Project (50974132) supported by the National Natural Science Foundation of ChinaProject (2011QNZT094) supported by the Fundamental Research Funds for the Central Universities, China
文摘The experiments were conducted to investigate the behavior of airborne particles adhering to the glass slides which were coated by several reagent films. The results showed that the adhesion level could be significantly changed by the reagent films. There were no evident rules between the average size of particles and sampling time interval, the placing angle and reagent concentration. The average particle size on the surface coated by composite reagent (2-3 μm) was smaller than that on the single reagent coated surface, while the largest particle size (4-5 μm) was observed on the surface coated with the Tween 60. The experiment also demonstrated that the best adhesive performance was obtained on the surface which was coated with 0.5% SDBS and 0.5% fluorocarbon composite reagents. The experiment results indicated that each reagent had a certain optimum adhesive range to the particle. The composite reagents with different proportion of single reagents exhibited some particular physical and chemical properties, which could effectively change the adhesive performance between the solid surface and the particles.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Projects(51071112,51325102)supported by the National Natural Science Foundation of China
文摘Ti coating on A3 steel was successfully prepared by direct electrochemical reduction of high-velocity oxy-fuel (HVOF) thermally sprayed and room-temperature dip-coating titanium dioxide coating on A3 steel in molten CaCl2 at 850 ℃. The interfacial microstructure and mutual diffusion between coating and steel substrate were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The results show that the precursory TiO2 coating prepared by HVOF has closer contact and better adhesion with the A3 steel substrate. After electrolysis, all of the electro-generated Ti coatings show intact contact with the substrates, regardless of the original contact situation between TiO2 layer and the steel substrate in the precursors. The inter-diffusion between the iron substrate and the reduced titanium takes place at the interface. The results demonstrate the possibility of the surface electrochemical metallurgy (SECM) is a promising surface engineering and additive manufacturing method.
基金Project(81170609)supported by the National Natural Science Foundation of ChinaProject(11JJ6087)supported by the Nature Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy,Central South University,China
文摘The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.
基金Supported in part by US NSF (CBET 0647113 and 0730383, CMMI 0700178, and DUE 0736739)the Institute of Manufacturing Research of Wayne State University.
文摘Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface through paint spray and curing in a multistage, dynamically changing environment. Traditionally, the quality control is solely post-process inspection based, and process operational adjustment is only experience based, thus the manufacturing may not be (highly) sustainable. In this article, a multiscale system modeling and analysis methodology is introduced for achieving a sustainable application of polymeric materials through paint spray and film curing in automotive surface coating manufacturing. By this methodology, the correlations among paint material, application processes and coating performance can be identified. The model-based analysis allows a comprehensive and deep study of the dynamic behaviors of the material, process, and product in a wide spectrum of length and time. Case studies illustrate the efficacy of the methodology for sustainable manufacturing.
基金Project(2011-0030058) supported by the National Research Foundation of Korea(NRF)Project(20134030200220) supported by the Human Resources Development Program of the Korea Institute of Energy Technology Evaluation,Korea+1 种基金Project supported by the Planning (KETEP) Grant Funded by the Korea Government Ministry of Trade,Industry and Energy and POSCO 2012,KoreaProject(10043795) supported by the Technology Innovation Program of the Ministry of Knowledge Economy Korea
文摘Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of aluminum(Al) phase, which was compared to the pristine graphite through its dispersibity and oxidation behavior. The graphite particles with and without surface modification were added, respecticely, in an Al(NO3)3 suspension used as a coating reagent, and then filtered at room temperature. The modified graphite shows better disperbility than the pristine graphite, indicating that the coating efficiency of Al precursor is enhanced in the modified graphite. With respect to oxidation behavior, the modified graphite without the coating layer is totally reacted with oxygen at heat treatment of 900 °C in air. However, the Al-coated graphite starts to react with oxygen at heat treatment of 900 °C and fully reacted with oxygen at heat treatment of 1000 °C, showing the gray and white colors, respectively. It is verified that the Al layer is individually and uniformly formed on the surface of graphite and the oxidation resistance of graphite is enhanced owing to the increased coating efficiency of Al precursor.
文摘In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.
基金Supported by the National Department Public Benefit Research Foundation(No.201005028)the National Key Technology Research and Development Program during the Twelfth Five-Year Plan Period of China(No.2012BAB15B01)
文摘The surface of ZrO2 nanoparticles was modified by styrene coupling grafting method to improve the dispersion and interaction of the nanoparticles with the epoxy coating in which the modified ZrO2 nanoparticles were used as an additive. The grafting performance and microstructure of the nano- ZrO2/epoxy coating were analyzed by Fourier transformation infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The corrosion behavior of the nano-ZrO2/epoxy coating on mild steel was evaluated in neutral 3.5 wt% NaC1 solution using electrochemical impedance spectroscopy (EIS). Both the coating capacitance and coating resistance fitted by the equivalent circuit from EIS were used to evaluate the protective performance of the coating towards the mild steel. The results show a superior stability and efficient corrosion protection by the modified ZrO2 nanoparticles. The epoxy coating containing 2 wt% modified ZrO2 nanoparticles exhibited the best corrosion performance among all the coating specimens. This research may provide an insight into the protection of mild steel using modified epoxy coatings.
基金the National Natural Science Foundation of China(No.51575073)International Cooperation Special Project in Science and Technology of China(No.2015DFR70480)Scientific and Technological Research Program of Chongqing,China(Nos.cstc2017jcyjBX0031,cstc2018jszx-cyzdX0126).
文摘Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to characterize the phases,microstructure and composition of the coated samples.The results show that the feedstock composition has a significant impact on the phases,microstructure and thickness of the coatings.For the sample with AlCl3 powder as the activator,the coating is very thick and composed of gradient phases and structures from surface to inside,including small amount ofb-Mg2Al3,coarse eutectic-like structure ofγ-Mg17Al12+δ-Mg,and fineγ-Mg17Al12 precipitations.In contrast,for the sample with AlCl3 and pure Al composite powders as the activator,the coating is relatively thin and contains a thin Al2O3 layer and a small amount of fineγ-Mg17Al12 precipitates.For the pack-cementation aluminizing that is not protected by high-vacuum or inert gas,the addition of pure Al powders can easily introduce the Al2O3 layer into the coating to prevent active Al ions further penetrating into the magnesium matrix,resulting in the thin Al-containing coating.The microhardness and corrosion behavior of the two kinds of aluminized coatings were also studied and discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.T2121003,51725501,51935001,52205297).
文摘Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.
基金Project(2017zzts005) supported by the Fundamental Research Funds for the Central Universities of Central South University
文摘Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.
文摘Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.
基金Supported by the Open Project of Key Laboratory of Marine New Materials of CNITECH(No.LMMT-KFKT-2014-008)the National Basic Research Program of China(973 Program)(No.2014CB643304)
文摘Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed tmiformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.
文摘Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coating were used to enhance the surfaceproperties of the titanium alloy substrate.Hard and wear resistant coatings such as TiAlN and AlCrN were applied over texturedtitanium alloy surfaces with chromium as interlayer.To improve the friction and wear resisting performance of hard coatings further,solid lubricant,molybdenum disulphide(MoS2),was deposited on dimples made over hard coatings.Unidirectional sliding weartests were performed with pin on disc contact geometry,to evaluate the tribological performance of coated substrates.The tests wereperformed under three different normal loads for a period of40min at sliding velocity of2m/s.The tribological behaviours ofmulti-layer coatings such as coating structure,friction coefficient and specific wear rate were investigated and analyzed.The lowerfriction coefficient of approximately0.1was found at the early sliding stage,which reduces the material transfer and increases thewear life.Although,the friction coefficient increased to high values after MoS2coating was partially removed,substrate was stillprotected against wear by underlying hard composite layer.
文摘A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied through orthogonal experimental methods. The factors studied were rotation speed, modifier dosage, emulsification temperature, emulsification time and heat aging time after emulsification. Optimized conditions for modification of the surface were: rotation speed 16000 r/min; modifier dosage 3%; emulsification temperature 75 ℃; emulsification time 60 min and aging time 40 min. The modified nano-CaCO3 was also studied by size-distribution measurements, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results show that the size distribution of the modified nano-CaCO3 is uniform and that there are chemi-sorption and physi-sorption between the nano-CaCO3 and the modifier. Compared to traditional architectural coatings without nano-CaCO3, the nanometer composite coatings are obviously improved in respect to dirt resistance, scrub resistance, thixotropy, water resistance, alkalinity resistance and aging resistance.
文摘A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower cost. Scanning electronic microscopy(SEM), optical microscope, microhardness test and wear test were adopted to detect the surface quality and the properties of the coating, such as micrograph, microstructure, micro-hardness wear resistance and adherence between the coating and the substrate. The experimental results showed that the suitable technological parameters to be used, the coatings had better the surface quality, higher hardness and wear resistance.