Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively i...Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.展开更多
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft...According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.展开更多
Boronising of steels is a hardening process to get high surface hardness. The erosion resistance of boronised steels was researched with the use of four kinds of erodent, i.e. glass, alumina, quartz and silicon carbid...Boronising of steels is a hardening process to get high surface hardness. The erosion resistance of boronised steels was researched with the use of four kinds of erodent, i.e. glass, alumina, quartz and silicon carbide. The erosion rate increases rapidly with erodent hardness and severe erosion occurs with high impacting angle range of hard particles. SEM analysis indicated that chipping is caused by repetitive impacting of glass and quartz, whereas by alumina and silicon carbide impacting, chipping, and that plastic flow take place simultaneously and the erosion rate reaches the peak value when the impacting angle is above 60°.展开更多
Experimental analysis of the cracking in the ceramics subsequent to water quenching have been conducted to clarify the uncertainties of cracking in the ceramics when subjected to thermal shock.The results here indicat...Experimental analysis of the cracking in the ceramics subsequent to water quenching have been conducted to clarify the uncertainties of cracking in the ceramics when subjected to thermal shock.The results here indicate that at the critical point of quench temperature,the crack density and the depth reached the minimum and the maximum limits,respectively.On increase of the quench temperature,the crack density increased rapidly before reaching its saturation point,while the crack depth initially decreased rapidly and then increased gradually before reaching its saturation point.展开更多
基金Projects JH03-001 supported by the High and New Technology Foundation of Jiangsu High School2006B009 by the Science Foundation of China University ofMining & Technology
文摘Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
文摘Boronising of steels is a hardening process to get high surface hardness. The erosion resistance of boronised steels was researched with the use of four kinds of erodent, i.e. glass, alumina, quartz and silicon carbide. The erosion rate increases rapidly with erodent hardness and severe erosion occurs with high impacting angle range of hard particles. SEM analysis indicated that chipping is caused by repetitive impacting of glass and quartz, whereas by alumina and silicon carbide impacting, chipping, and that plastic flow take place simultaneously and the erosion rate reaches the peak value when the impacting angle is above 60°.
基金supported by the National Natural Science Foundation of China(Grant Nos.11023001 and 11272313)
文摘Experimental analysis of the cracking in the ceramics subsequent to water quenching have been conducted to clarify the uncertainties of cracking in the ceramics when subjected to thermal shock.The results here indicate that at the critical point of quench temperature,the crack density and the depth reached the minimum and the maximum limits,respectively.On increase of the quench temperature,the crack density increased rapidly before reaching its saturation point,while the crack depth initially decreased rapidly and then increased gradually before reaching its saturation point.