In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be s...A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be significantly larger than expected.High lateral stresses measured in Australia and other places around the world indicate that the ratio of horizontal to vertical stress has been particularly high at shallow depths.The in situ strata is in compression and during excavation,stress is relieved towards the opening causing strata movement.Large excavations such as,open cut mines or highway cuttings,can initiate an extensive horizontal slide of surface layers towards the excavation.These ground movements can be damaging to surface structures such as water storage dams and large buildings.Based on stress measurements at shallow depths in Australian coal mines the study presented here calculates and models the extent of potential ground movement along the bedding surface adjacent to large excavations and provides a new prediction tool of land movement at the excavation boundary that can benefit the geotechnical practitioners in the mining industry.展开更多
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
文摘A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be significantly larger than expected.High lateral stresses measured in Australia and other places around the world indicate that the ratio of horizontal to vertical stress has been particularly high at shallow depths.The in situ strata is in compression and during excavation,stress is relieved towards the opening causing strata movement.Large excavations such as,open cut mines or highway cuttings,can initiate an extensive horizontal slide of surface layers towards the excavation.These ground movements can be damaging to surface structures such as water storage dams and large buildings.Based on stress measurements at shallow depths in Australian coal mines the study presented here calculates and models the extent of potential ground movement along the bedding surface adjacent to large excavations and provides a new prediction tool of land movement at the excavation boundary that can benefit the geotechnical practitioners in the mining industry.