针对车辆运动方向持续变化、目标车辆距离远近变化、光照强度变化等场景下,稳定且实时性地跟踪车辆的难点问题,融合自相关矩阵增量主成分分析(Incremental Principal Component Analysis,IPCA)增量学习与粒子滤波算法的基础上,提出一种...针对车辆运动方向持续变化、目标车辆距离远近变化、光照强度变化等场景下,稳定且实时性地跟踪车辆的难点问题,融合自相关矩阵增量主成分分析(Incremental Principal Component Analysis,IPCA)增量学习与粒子滤波算法的基础上,提出一种新的基于表观模型(Appearance Model,AM)的车辆跟踪方法,从跟踪初始利用自相关矩阵与特征值分解构建车辆的子空间图像,通过IPCA增量学习后的子空间均值、特征向量基共同参与似然概率密度的计算,提高粒子滤波算法粒子权值计算的精度.标准视频的跟踪实验表明:对比P.Hall-IPCA与D.Ross-IPCA表观模型跟踪方法,所提AM-IPCA车辆跟踪方法将跟踪成功率分别由82.7%~92.3%、92.1%~95.2%提升至95.1%~96.4%.展开更多
目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3...目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。展开更多
文摘针对车辆运动方向持续变化、目标车辆距离远近变化、光照强度变化等场景下,稳定且实时性地跟踪车辆的难点问题,融合自相关矩阵增量主成分分析(Incremental Principal Component Analysis,IPCA)增量学习与粒子滤波算法的基础上,提出一种新的基于表观模型(Appearance Model,AM)的车辆跟踪方法,从跟踪初始利用自相关矩阵与特征值分解构建车辆的子空间图像,通过IPCA增量学习后的子空间均值、特征向量基共同参与似然概率密度的计算,提高粒子滤波算法粒子权值计算的精度.标准视频的跟踪实验表明:对比P.Hall-IPCA与D.Ross-IPCA表观模型跟踪方法,所提AM-IPCA车辆跟踪方法将跟踪成功率分别由82.7%~92.3%、92.1%~95.2%提升至95.1%~96.4%.
文摘目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。