Surface displacement caused by underground coal mining is influenced by many factors such as the depth and thickness of the coal seam and joints in overburben rocks. Extensive efforts have been devoted to the ground s...Surface displacement caused by underground coal mining is influenced by many factors such as the depth and thickness of the coal seam and joints in overburben rocks. Extensive efforts have been devoted to the ground surface displacement. Nevertheless, the joints have not been taken into consideration for a long time. In fact, there exist numerous joints and cracks in rocks.As a result, the joints in overburden rocks have to be taken into account. The joints in rocks can be treated as initial damage theoretically. In this paper, two kinds of physical model, one containing no initial joints and anotber containing some initial joints, are employed to systematically investigate effecs of initial joints on surface subsidence. Moreover, within the framework of damage mechanics, the statistical relationships between the characteristic value for surface displacement and damage variable are obtained.展开更多
A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe ...A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.展开更多
Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geogr...Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m^3s^(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW.展开更多
文摘Surface displacement caused by underground coal mining is influenced by many factors such as the depth and thickness of the coal seam and joints in overburben rocks. Extensive efforts have been devoted to the ground surface displacement. Nevertheless, the joints have not been taken into consideration for a long time. In fact, there exist numerous joints and cracks in rocks.As a result, the joints in overburden rocks have to be taken into account. The joints in rocks can be treated as initial damage theoretically. In this paper, two kinds of physical model, one containing no initial joints and anotber containing some initial joints, are employed to systematically investigate effecs of initial joints on surface subsidence. Moreover, within the framework of damage mechanics, the statistical relationships between the characteristic value for surface displacement and damage variable are obtained.
基金Supported by the National Natural Science Foundation of China (No. 20076012).
文摘A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.
基金supported by the National Natural Science Foundation of China(Grant No.91537211)
文摘Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m^3s^(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW.