Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conduct...Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
The effect of surface polishing on the wear behavior of thermally oxidized commercial pure zirconium (CP-Zr) under dry sliding conditions was investigated. Surface ground CP-Zr with a roughness of 0.21 μm (Ra) was th...The effect of surface polishing on the wear behavior of thermally oxidized commercial pure zirconium (CP-Zr) under dry sliding conditions was investigated. Surface ground CP-Zr with a roughness of 0.21 μm (Ra) was thermally oxidized (TO) at 650 °C for 6 h. After TO, some samples were polished to smoothen the surface with a finish of 0.04 μm (Ra). The response of the polished and unpolished TO samples to dry sliding wear was investigated under unidirectional sliding conditions. The results show that surface polishing after TO affects the dry sliding wear behavior of TO CP-Zr in several aspects, including coefficient of friction, wear rate, crack formation and oxide layer breakdown. In particular, it is found that smoothening the TO surface favors the formation of semi-circular cracks in the wear track and accelerates oxide layer breakdown during dry sliding. A slightly rough TO surface helps to reduce the tendency of the oxide layer towards cracking and to increase the wear resistance at high contact loads. The mechanisms involved are discussed in terms of asperity contacts, crack formation, propagation and final fracture.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejec...Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.展开更多
When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur f...When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.展开更多
This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based o...This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based on BBD (Box-Behnken Design) and the work-piece material was 9CrSi steel. The input process parameters were the current, the pulse on time, the pulse off time and the voltage. The effects of the input parameters on the surface finish were evaluated by analysing variance. Besides, from the results of the experiments, a regression equation for determining the surface roughness is introduced. Also, the optimum input parameter values were found in order to get the minimum surface roughness.展开更多
Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lin...Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.展开更多
文摘Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
文摘The effect of surface polishing on the wear behavior of thermally oxidized commercial pure zirconium (CP-Zr) under dry sliding conditions was investigated. Surface ground CP-Zr with a roughness of 0.21 μm (Ra) was thermally oxidized (TO) at 650 °C for 6 h. After TO, some samples were polished to smoothen the surface with a finish of 0.04 μm (Ra). The response of the polished and unpolished TO samples to dry sliding wear was investigated under unidirectional sliding conditions. The results show that surface polishing after TO affects the dry sliding wear behavior of TO CP-Zr in several aspects, including coefficient of friction, wear rate, crack formation and oxide layer breakdown. In particular, it is found that smoothening the TO surface favors the formation of semi-circular cracks in the wear track and accelerates oxide layer breakdown during dry sliding. A slightly rough TO surface helps to reduce the tendency of the oxide layer towards cracking and to increase the wear resistance at high contact loads. The mechanisms involved are discussed in terms of asperity contacts, crack formation, propagation and final fracture.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
基金National Natural Science Foundation of China(60077031)
文摘Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.
文摘When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.
文摘This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based on BBD (Box-Behnken Design) and the work-piece material was 9CrSi steel. The input process parameters were the current, the pulse on time, the pulse off time and the voltage. The effects of the input parameters on the surface finish were evaluated by analysing variance. Besides, from the results of the experiments, a regression equation for determining the surface roughness is introduced. Also, the optimum input parameter values were found in order to get the minimum surface roughness.
文摘Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.