使用甲醇溶剂熏蒸聚(4,8-双[5-(2-乙基己基)噻吩-2-基]苯并[1,2-b;4,5-b']双噻吩-2,6-双基-{4-(2-乙基己基)-3-氟代噻吩[3,4-b]噻吩-}-2-羧基-2,6-双基)(PTB7-Th)和聚[N,N'-双(2-辛基十二烷基)-1,4,5,8-萘二酰亚胺-2,6-双基-并-...使用甲醇溶剂熏蒸聚(4,8-双[5-(2-乙基己基)噻吩-2-基]苯并[1,2-b;4,5-b']双噻吩-2,6-双基-{4-(2-乙基己基)-3-氟代噻吩[3,4-b]噻吩-}-2-羧基-2,6-双基)(PTB7-Th)和聚[N,N'-双(2-辛基十二烷基)-1,4,5,8-萘二酰亚胺-2,6-双基-并-5,5'-(2,2'-双噻吩)](N2200)二元混合的活性层薄膜,发现其活性层和镀金探针间的接触电势差从37 m V升高到160 m V,表明活性层表面功函由4.71 e V降低到4.59 e V.XPS结果表明,由于甲醇和N2200之间更强的相互作用,在溶剂熏蒸过程中有更多的N2200分子扩散到薄膜表面.扩散引起了活性层表面功函的减小,使活性层和电极之间能级更加匹配,形成了更好的欧姆接触,使器件的功率转化效率提高了10%以上.展开更多
A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
An analytical model of the surface field distribution and breakdown voltage of the reduced surface field lateral double diffusion MOS transistor is proposed.Based on the 2-D Poisson's equation solution,the derived...An analytical model of the surface field distribution and breakdown voltage of the reduced surface field lateral double diffusion MOS transistor is proposed.Based on the 2-D Poisson's equation solution,the derived model gives the closed form solutions of the surface potential and electrical field distributions as a function of the structure parameters and drain bias.A criterion for obtaining the optimal trade-off between the breakdown voltage and on-resistance is also presented to serve to quantify the maximum breakdown voltage and optimal relations of all design parameters.Analytical results are shown in good agreement with the numerical analysis obtained by the semiconductor device simulator MEDICI and previous reported experimental data.展开更多
Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydr...Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.展开更多
Carbon catalysis is an attractive metal-free catalytic transformation,and its performance is significantly dependent on the number of accessible active sites.However,owing to the inherent stability of the C-C linkage,...Carbon catalysis is an attractive metal-free catalytic transformation,and its performance is significantly dependent on the number of accessible active sites.However,owing to the inherent stability of the C-C linkage,only limited active sites at the edge defects of the basal plane can be obtained even after a harsh oxidation treatment.In this study,the concept of interfacial interactions was adopted to propose an efficient strategy to develop highly active carbon catalysts.The alumina/carbon interface formed in situ acted as a cradle for the generation of oxygen-containing functional groups.In the absence of oxidation treatment,the concentration of oxygen-containing functional groups and the specific surface area can reach 1.27 mmol·g^(-1) and 2340 m^(2)·g^(-1),respectively,which are significantly higher than those of carbon prepared by traditional hard template methods.This active carbon shows a significant enhancement in catalytic performance in the oxidative coupling of amine to imine,about 22-fold higher than that of a well-known graphite oxide catalyst.Such interfacial interaction strategies are based on sustainable carbon sources and can effectively tune the porous structure of carbon in the micro-and meso-ranges.This conceptual finding offers new opportunities for the development of high-performance carbon-based metal-free catalysts.展开更多
Gold nanorods,as an emerging noble metal nanomaterial with unique properties,have become the new exciting focus of theoretical and experimental studies in the past few years.The structure and function of gold nanorods...Gold nanorods,as an emerging noble metal nanomaterial with unique properties,have become the new exciting focus of theoretical and experimental studies in the past few years.The structure and function of gold nanorods,especially their biocompatibility, optical property,and photothermal effects,have been attracting more and more attention.Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy.In this article,we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization,molecular imaging,and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts,issues,approaches,and challenges,with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.展开更多
Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes ...Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes of single and twin shallow tunnels with considering the effects of surface settlement.Upper bound solutions derived by functional catastrophe theory are used for describing the distinct characteristics of falling blocks of different parts in twin tunnels.Furthermore the analytical solutions of minimum supporting pressures in shallow tunnels are obtained by the help of the variational principle.Lastly,the comparisons are made both in collapsed mechanism and stability factor with different methods.According to the numerical results in this work,the influences of different parameters on the size of collapsing block are presented in the tables and the limit supporting loads are illustrated in the form graphs that account for the surface settlement.展开更多
文摘使用甲醇溶剂熏蒸聚(4,8-双[5-(2-乙基己基)噻吩-2-基]苯并[1,2-b;4,5-b']双噻吩-2,6-双基-{4-(2-乙基己基)-3-氟代噻吩[3,4-b]噻吩-}-2-羧基-2,6-双基)(PTB7-Th)和聚[N,N'-双(2-辛基十二烷基)-1,4,5,8-萘二酰亚胺-2,6-双基-并-5,5'-(2,2'-双噻吩)](N2200)二元混合的活性层薄膜,发现其活性层和镀金探针间的接触电势差从37 m V升高到160 m V,表明活性层表面功函由4.71 e V降低到4.59 e V.XPS结果表明,由于甲醇和N2200之间更强的相互作用,在溶剂熏蒸过程中有更多的N2200分子扩散到薄膜表面.扩散引起了活性层表面功函的减小,使活性层和电极之间能级更加匹配,形成了更好的欧姆接触,使器件的功率转化效率提高了10%以上.
文摘制备Fe41Co7Cr15Mo14C15B6Y2块体非晶合金与非晶合金涂层,通过化学腐蚀浸泡法分析两者腐蚀前后的相对表面功函数,从而研究两者致密度差值对耐蚀性的影响。采用动电位极化曲线结合交流阻抗测试分析涂层与块体在0.5 mol/L H2SO4溶液中的电化学腐蚀特性,进一步得到孔隙在腐蚀过程中的作用。结果表明:块体非晶的自腐蚀电位高于涂层的,其电流值比涂层的小一个数量级,其拟合电路为R(QR)型;由于孔隙及表面钝化膜等影响因素的存在,涂层的拟合电路为(R(Q(R(QR)))型。通过电子探针实验得出涂层与块体存在9.25%的孔隙率差值,导致了50 me V的功函数差值。孔隙尺寸越大、数量越多则合金耐蚀性越差。腐蚀前后块体非晶合金的功函数值都比涂层的高,且表现出更强的耐蚀性。
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
文摘An analytical model of the surface field distribution and breakdown voltage of the reduced surface field lateral double diffusion MOS transistor is proposed.Based on the 2-D Poisson's equation solution,the derived model gives the closed form solutions of the surface potential and electrical field distributions as a function of the structure parameters and drain bias.A criterion for obtaining the optimal trade-off between the breakdown voltage and on-resistance is also presented to serve to quantify the maximum breakdown voltage and optimal relations of all design parameters.Analytical results are shown in good agreement with the numerical analysis obtained by the semiconductor device simulator MEDICI and previous reported experimental data.
基金Project(52105175)supported by the National Natural Science Foundation of ChinaProject(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,China。
文摘Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.
文摘Carbon catalysis is an attractive metal-free catalytic transformation,and its performance is significantly dependent on the number of accessible active sites.However,owing to the inherent stability of the C-C linkage,only limited active sites at the edge defects of the basal plane can be obtained even after a harsh oxidation treatment.In this study,the concept of interfacial interactions was adopted to propose an efficient strategy to develop highly active carbon catalysts.The alumina/carbon interface formed in situ acted as a cradle for the generation of oxygen-containing functional groups.In the absence of oxidation treatment,the concentration of oxygen-containing functional groups and the specific surface area can reach 1.27 mmol·g^(-1) and 2340 m^(2)·g^(-1),respectively,which are significantly higher than those of carbon prepared by traditional hard template methods.This active carbon shows a significant enhancement in catalytic performance in the oxidative coupling of amine to imine,about 22-fold higher than that of a well-known graphite oxide catalyst.Such interfacial interaction strategies are based on sustainable carbon sources and can effectively tune the porous structure of carbon in the micro-and meso-ranges.This conceptual finding offers new opportunities for the development of high-performance carbon-based metal-free catalysts.
文摘Gold nanorods,as an emerging noble metal nanomaterial with unique properties,have become the new exciting focus of theoretical and experimental studies in the past few years.The structure and function of gold nanorods,especially their biocompatibility, optical property,and photothermal effects,have been attracting more and more attention.Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy.In this article,we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization,molecular imaging,and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts,issues,approaches,and challenges,with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application.
基金Project(2017zzts157)supported by the Innovation Foundation for Postgraduate of Central South University,China
文摘Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes of single and twin shallow tunnels with considering the effects of surface settlement.Upper bound solutions derived by functional catastrophe theory are used for describing the distinct characteristics of falling blocks of different parts in twin tunnels.Furthermore the analytical solutions of minimum supporting pressures in shallow tunnels are obtained by the help of the variational principle.Lastly,the comparisons are made both in collapsed mechanism and stability factor with different methods.According to the numerical results in this work,the influences of different parameters on the size of collapsing block are presented in the tables and the limit supporting loads are illustrated in the form graphs that account for the surface settlement.